问题陈述:为运输公司建立一个预测模型, 以找到一艘船需要多少船员的估计。
数据集包含159个具有9个特征的实例。
数据集描述如下:
文章图片
让我们建立线性回归模型, 预测机组人员
附加数据集:cruise_ship_info
import pyspark
from pyspark.sql import SparkSession
#SparkSession is now the entry point of Spark
#SparkSession can also be construed as gateway to spark libraries#create instance of spark class
spark = SparkSession.builder.appName( 'housing_price_model' ).getOrCreate()#create spark dataframe of input csv file
df = spark.read.csv( 'D:\python coding\pyspark_tutorial\Linear regression\cruise_ship_info.csv'
, inferSchema = True , header = True )
df.show( 10 )
输出:
+-----------+-----------+---+------------------+----------+------+------+-----------------+----+
|Ship_name|Cruise_line|Age|Tonnage|passengers|length|cabins|passenger_density|crew|
+-----------+-----------+---+------------------+----------+------+------+-----------------+----+
|Journey|Azamara|6|30.276999999999997|6.94|5.94|3.55|42.64|3.55|
|Quest|Azamara|6|30.276999999999997|6.94|5.94|3.55|42.64|3.55|
|Celebration|Carnival| 26|47.262|14.86|7.22|7.43|31.8| 6.7|
|Conquest|Carnival| 11|110.0|29.74|9.53| 14.88|36.99|19.1|
|Destiny|Carnival| 17|101.353|26.42|8.92| 13.21|38.36|10.0|
|Ecstasy|Carnival| 22|70.367|20.52|8.55|10.2|34.29| 9.2|
|Elation|Carnival| 15|70.367|20.52|8.55|10.2|34.29| 9.2|
|Fantasy|Carnival| 23|70.367|20.56|8.55| 10.22|34.23| 9.2|
|Fascination|Carnival| 19|70.367|20.52|8.55|10.2|34.29| 9.2|
|Freedom|Carnival|6|110.23899999999999|37.0|9.51| 14.87|29.79|11.5|
+-----------+-----------+---+------------------+----------+------+------+-----------------+----+
#prints structure of dataframe along with datatype
df.printSchema()
输出:
文章图片
#In our predictive model, below are the columns
df.columns
输出:
文章图片
#columns identified as features are as below:
#['Cruise_line', 'Age', 'Tonnage', 'passengers', 'length', 'cabins', 'passenger_density']
#to work on the features, spark MLlib expects every value to be in numeric form
#feature 'Cruise_line is string datatype
#using StringIndexer, string type will be typecast to numeric datatype
#import library strinindexer for typecastingfrom pyspark.ml.feature import StringIndexer
indexer = StringIndexer(inputCol = 'Cruise_line' , outputCol = 'cruise_cat' )
indexed = indexer.fit(df).transform(df)#above code will convert string to numeric feature and create a new dataframe
#new dataframe contains a new feature 'cruise_cat' and can be used further
#feature cruise_cat is now vectorized and can be used to fed to model
for item in indexed.head( 5 ):
print (item)
print ( '\n' )
输出:
Row(Ship_name='Journey', Cruise_line='Azamara', Age=6, Tonnage=30.276999999999997, passengers=6.94, length=5.94, cabins=3.55, passenger_density=42.64, crew=3.55, cruise_cat=16.0)Row(Ship_name='Quest', Cruise_line='Azamara', Age=6, Tonnage=30.276999999999997, passengers=6.94, length=5.94, cabins=3.55, passenger_density=42.64, crew=3.55, cruise_cat=16.0)Row(Ship_name='Celebration', Cruise_line='Carnival', Age=26, Tonnage=47.262, passengers=14.86, length=7.22, cabins=7.43, passenger_density=31.8, crew=6.7, cruise_cat=1.0)Row(Ship_name='Conquest', Cruise_line='Carnival', Age=11, Tonnage=110.0, passengers=29.74, length=9.53, cabins=14.88, passenger_density=36.99, crew=19.1, cruise_cat=1.0)Row(Ship_name='Destiny', Cruise_line='Carnival', Age=17, Tonnage=101.353, passengers=26.42, length=8.92, cabins=13.21, passenger_density=38.36, crew=10.0, cruise_cat=1.0)
from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
#creating vectors from features
#Apache MLlib takes input if vector form
assembler = VectorAssembler(inputCols = [ 'Age' , 'Tonnage' , 'passengers' , 'length' , 'cabins' , 'passenger_density' , 'cruise_cat' ], outputCol = 'features' )
output = assembler.transform(indexed)
output.select( 'features' , 'crew' ).show( 5 )
#output as below
输出:
文章图片
#final data consist of features and label which is crew.
final_data = http://www.srcmini.com/output.select('features' , 'crew' )
#splitting data into train and test
train_data, test_data = http://www.srcmini.com/final_data.randomSplit([ 0.7 , 0.3 ])
train_data.describe().show()
输出:
文章图片
test_data.describe().show()
输出:
文章图片
#import LinearRegression library
from pyspark.ml.regression import LinearRegression
#creating an object of class LinearRegression
#object takes features and label as input arguments
ship_lr = LinearRegression(featuresCol = 'features' , labelCol = 'crew' )
#pass train_data to train model
trained_ship_model = ship_lr.fit(train_data)
#evaluating model trained for Rsquared error
ship_results = trained_ship_model.evaluate(train_data)print ( 'Rsquared Error :' , ship_results.r2)
#R2 value shows accuracy of model is 92%
#model accuracy is very good and can be use for predictive analysis
输出:
文章图片
#testing Model on unlabeled data
#create unlabeled data from test_data
#testing model on unlabeled data
unlabeled_data = http://www.srcmini.com/test_data.select('features' )
unlabeled_data.show( 5 )
输出:
文章图片
predictions = trained_ship_model.transform(unlabeled_data)
predictions.show()
#below are the results of output from test data
输出:
文章图片
【Pyspark(使用Apache MLlib的线性回归)】首先, 你的面试准备可通过以下方式增强你的数据结构概念:Python DS课程。
推荐阅读
- 毕达哥拉斯定理及其反函数–三角形10级数学
- Java多线程中的死锁详细介绍
- 使用reduce操作的金字塔形式(先升后降)连续数组
- #yyds干货盘点#k8s知识进阶知识,使用二进制安装包安装k8s的环境准备
- linux下MySQL忘记root密码#yyds干货盘点#
- DRBD+Pacemaker+NFS+KVM+K8S之drbd篇
- #yyds干货盘点#Linux网络配置故障排除命令
- MySQL启动脚本
- 模拟逻辑卷扩容