1.计算商城中2021年每月的GMV 现有订单总表tb_order_overall
id | order_id | uid | event_time | total_amount | total_cnt | status |
---|---|---|---|---|---|---|
1 | 301001 | 101 | 2021-10-01 10:00:00 | 15900 | 2 | 1 |
2 | 301002 | 101 | 2021-10-01 11:00:00 | 15900 | 2 | 1 |
3 | 301003 | 102 | 2021-10-02 10:00:00 | 34500 | 8 | 0 |
4 | 301004 | 103 | 2021-10-12 10:00:00 | 43500 | 9 | 1 |
5 | 301005 | 105 | 2021-11-01 10:00:00 | 31900 | 7 | 1 |
6 | 301006 | 102 | 2021-11-02 10:00:00 | 24500 | 6 | 1 |
7 | 301007 | 102 | 2021-11-03 10:00:00 | -24500 | 6 | 2 |
8 | 301008 | 104 | 2021-11-04 10:00:00 | 55500 | 12 | 0 |
场景逻辑说明:
- 用户将购物车中多件商品一起下单时,订单总表会生成一个订单(但此时未付款,status-订单状态为0,表示待付款);
- 当用户支付完成时,在订单总表修改对应订单记录的status-订单状态为1,表示已付款;
- 若用户退货退款,在订单总表生成一条交易总金额为负值的记录(表示退款金额,订单号为退款单号,status-订单状态为2表示已退款)。
注:GMV为已付款订单和未付款订单两者之和。结果按GMV升序排序。
输出示例:
示例数据输出如下:
month | GMV |
---|---|
2021-10 | 109800 |
2021-11 | 111900 |
2021年10月有3笔已付款的订单,1笔未付款订单,总交易金额为109800;2021年11月有2笔已付款订单,1笔未付款订单,
总交易金额为111900(还有1笔退款订单由于已计算了付款的订单金额,无需计算在GMV中)。
示例1
DROP TABLE IF EXISTS tb_order_overall;
CREATE TABLE tb_order_overall (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
order_id INT NOT NULL COMMENT '订单号',
uid INT NOT NULL COMMENT '用户ID',
event_time datetime COMMENT '下单时间',
total_amount DECIMAL NOT NULL COMMENT '订单总金额',
total_cnt INT NOT NULL COMMENT '订单商品总件数',
`status` TINYINT NOT NULL COMMENT '订单状态'
) CHARACTER SET utf8 COLLATE utf8_bin;
INSERT INTO tb_order_overall(order_id, uid, event_time, total_amount, total_cnt, `status`) VALUES
(301001, 101, '2021-10-01 10:00:00', 15900, 2, 1),
(301002, 101, '2021-10-01 11:00:00', 15900, 2, 1),
(301003, 102, '2021-10-02 10:00:00', 34500, 8, 0),
(301004, 103, '2021-10-12 10:00:00', 43500, 9, 1),
(301005, 105, '2021-11-01 10:00:00', 31900, 7, 1),
(301006, 102, '2021-11-02 10:00:00', 24500, 6, 1),
(391007, 102, '2021-11-03 10:00:00', -24500, 6, 2),
(301008, 104, '2021-11-04 10:00:00', 55500, 12, 0);
输出2021-10|109800
2021-11|111900
题解
select
date_format(event_time,'%Y-%m') month,
round(sum(total_amount),0) GMV
from tb_order_overall
where year(event_time)='2021' and status=0 or status=1
group by date_format(event_time,'%Y-%m')
having GMV >100000
order by GMV
2. 统计2021年10月每个退货率不大于0.5的商品各项指标 现有用户对展示的商品行为表tb_user_event
id | uid | product_id | event_time | if_click | if_cart | if_payment | if_refund |
---|---|---|---|---|---|---|---|
1 | 101 | 8001 | 2021-10-01 10:00:00 | 0 | 0 | 0 | 0 |
2 | 102 | 8001 | 2021-10-01 10:00:00 | 1 | 0 | 0 | 0 |
3 | 103 | 8001 | 2021-10-01 10:00:00 | 1 | 1 | 0 | 0 |
4 | 104 | 8001 | 2021-10-02 10:00:00 | 1 | 1 | 1 | 0 |
5 | 105 | 8001 | 2021-10-02 10:00:00 | 1 | 1 | 1 | 0 |
6 | 101 | 8002 | 2021-10-03 10:00:00 | 1 | 1 | 1 | 0 |
7 | 109 | 8001 | 2021-10-04 10:00:00 | 1 | 1 | 1 | 1 |
问题:请统计2021年10月每个有展示记录的退货率不大于0.5的商品各项指标,
注:
- 商品点展比=点击数÷展示数;
- 加购率=加购数÷点击数;
- 成单率=付款数÷加购数;退货率=退款数÷付款数,
- 当分母为0时整体结果记为0,结果中各项指标保留3位小数,并按商品ID升序排序。
示例数据的输出结果如下
product_id | ctr | cart_rate | payment_rate | refund_rate |
---|---|---|---|---|
8001 | 0.833 | 0.800 | 0.750 | 0.333 |
8002 | 1.000 | 1.000 | 1.000 | 0.000 |
在2021年10月商品8001被展示了6次,点击了5次,加购了4次,付款了3次,退款了1次,因此点击率为5/6=0.833,加购率为4/5=0.800,
成单率为3/4=0.750,退货率为1/3=0.333(保留3位小数);
示例1
DROP TABLE IF EXISTS tb_user_event;
CREATE TABLE tb_user_event (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
uid INT NOT NULL COMMENT '用户ID',
product_id INT NOT NULL COMMENT '商品ID',
event_time datetime COMMENT '行为时间',
if_click TINYINT COMMENT '是否点击',
if_cart TINYINT COMMENT '是否加购物车',
if_payment TINYINT COMMENT '是否付款',
if_refund TINYINT COMMENT '是否退货退款'
) CHARACTER SET utf8 COLLATE utf8_bin;
INSERT INTO tb_user_event(uid, product_id, event_time, if_click, if_cart, if_payment, if_refund) VALUES
(101, 8001, '2021-10-01 10:00:00', 0, 0, 0, 0),
(102, 8001, '2021-10-01 10:00:00', 1, 0, 0, 0),
(103, 8001, '2021-10-01 10:00:00', 1, 1, 0, 0),
(104, 8001, '2021-10-02 10:00:00', 1, 1, 1, 0),
(105, 8001, '2021-10-02 10:00:00', 1, 1, 1, 0),
(101, 8002, '2021-10-03 10:00:00', 1, 1, 1, 0),
(109, 8001, '2021-10-04 10:00:00', 1, 1, 1, 1);
输出8001|0.833|0.800|0.750|0.333
8002|1.000|1.000|1.000|0.000
题解
select
product_id,
round(count_click/count_product,3) ctr,
round(count_cart/count_click,3) cart_rate,
round(count_payment/count_cart,3) payment_rate,
round(count_refund/count_payment,3) refund_rate
from
(
select
product_id,
count(*) count_product,
sum(if_click) count_click,
sum(if_cart) count_cart,
sum(if_payment) count_payment,
sum(if_refund)count_refund
from tb_user_event
where DATE_FORMAT(event_time,'%Y-%m')='2021-10'
group by product_id
)t_product
having refund_rate<=0.5
order by product_id
3. 某店铺的各商品毛利率及店铺整体毛利率 商品信息表tb_product_info
id | product_id | shop_id | tag | in_price | quantity | release_time |
---|---|---|---|---|---|---|
1 | 8001 | 901 | 家电 | 6000 | 100 | 2020-01-01 10:00:00 |
2 | 8002 | 902 | 家电 | 12000 | 50 | 2020-01-01 10:00:00 |
3 | 8003 | 901 | 3C数码 | 12000 | 50 | 2020-01-01 10:00:00 |
订单总表tb_order_overall
id | order_id | uid | event_time | total_amount | total_cnt | status |
---|---|---|---|---|---|---|
1 | 301001 | 101 | 2021-10-01 10:00:00 | 30000 | 3 | 1 |
2 | 301002 | 102 | 2021-10-01 11:00:00 | 23900 | 2 | 1 |
3 | 301003 | 103 | 2021-10-02 10:00:00 | 31000 | 2 | 1 |
订单明细表tb_order_detail
id | order_id | product_id | price | cnt |
---|---|---|---|---|
1 | 301001 | 8001 | 8500 | 2 |
2 | 301001 | 8002 | 15000 | 1 |
3 | 301002 | 8001 | 8500 | 1 |
4 | 301002 | 8002 | 16000 | 1 |
5 | 301003 | 8002 | 14000 | 1 |
6 | 301003 | 8003 | 18000 | 1 |
场景逻辑说明:
- 用户将购物车中多件商品一起下单时,订单总表会生成一个订单(但此时未付款,status-订单状态为0表示待付款),在订单明细表生成该订单中每个商品的信息;
- 当用户支付完成时,在订单总表修改对应订单记录的status-订单状态为1表示已付款;
- 若用户退货退款,在订单总表生成一条交易总金额为负值的记录(表示退款金额,订单号为退款单号,status-订单状态为2表示已退款)。
注:商品毛利率=(1-进价/平均单件售价)*100%;
店铺毛利率=(1-总进价成本/总销售收入)*100%。
结果先输出店铺毛利率,再按商品ID升序输出各商品毛利率,均保留1位小数。
输出示例:
示例数据的输出结果如下:
product_id | profit_rate |
---|---|
店铺汇总 | 31.0% |
8001 | 29.4% |
8003 | 33.3% |
店铺901有两件商品8001和8003;8001售出了3件,销售总额为25500,进价总额为18000,毛利率为1-18000/25500=29.4%,8003售出了1件,售价为18000,进价为12000,毛利率为33.3%;
店铺卖出的这4件商品总销售额为43500,总进价为30000,毛利率为1-30000/43500=31.0%
示例1
DROP TABLE IF EXISTS tb_order_overall;
CREATE TABLE tb_order_overall (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
order_id INT NOT NULL COMMENT '订单号',
uid INT NOT NULL COMMENT '用户ID',
event_time datetime COMMENT '下单时间',
total_amount DECIMAL NOT NULL COMMENT '订单总金额',
total_cnt INT NOT NULL COMMENT '订单商品总件数',
`status` TINYINT NOT NULL COMMENT '订单状态'
) CHARACTER SET utf8 COLLATE utf8_bin;
INSERT INTO tb_order_overall(order_id, uid, event_time, total_amount, total_cnt, `status`) VALUES
(301001, 101, '2021-10-01 10:00:00', 30000, 3, 1),
(301002, 102, '2021-10-01 11:00:00', 23900, 2, 1),
(301003, 103, '2021-10-02 10:00:00', 31000, 2, 1);
DROP TABLE IF EXISTS tb_product_info;
CREATE TABLE tb_product_info (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
product_id INT NOT NULL COMMENT '商品ID',
shop_id INT NOT NULL COMMENT '店铺ID',
tag VARCHAR(12) COMMENT '商品类别标签',
in_price DECIMAL NOT NULL COMMENT '进货价格',
quantity INT NOT NULL COMMENT '进货数量',
release_time datetime COMMENT '上架时间'
) CHARACTER SET utf8 COLLATE utf8_bin;
DROP TABLE IF EXISTS tb_order_detail;
CREATE TABLE tb_order_detail (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
order_id INT NOT NULL COMMENT '订单号',
product_id INT NOT NULL COMMENT '商品ID',
price DECIMAL NOT NULL COMMENT '商品单价',
cnt INT NOT NULL COMMENT '下单数量'
) CHARACTER SET utf8 COLLATE utf8_bin;
INSERT INTO tb_product_info(product_id, shop_id, tag, in_price, quantity, release_time) VALUES
(8001, 901, '家电', 6000, 100, '2020-01-01 10:00:00'),
(8002, 902, '家电', 12000, 50, '2020-01-01 10:00:00'),
(8003, 901, '3C数码', 12000, 50, '2020-01-01 10:00:00');
INSERT INTO tb_order_detail(order_id, product_id, price, cnt) VALUES
(301001, 8001, 8500, 2),
(301001, 8002, 15000, 1),
(301002, 8001, 8500, 1),
(301002, 8002, 16000, 1),
(301003, 8002, 14000, 1),
(301003, 8003, 18000, 1);
输出店铺汇总|31.0%
8001|29.4%
8003|33.3%
题解
方式一:
select *
from
(
select
if(product_id is not null ,product_id,'店铺汇总') product_id,
concat(round((1-sum(cnt_in_price)/sum(cnt_price))*100,1),"%")profit_rate
from
(
select product_id,in_price*cnt cnt_in_price,price*cnt cnt_price
from tb_product_info
inner join tb_order_detail
using(product_id)
inner join tb_order_overall
using(order_id)
where date_format(event_time,"%Y-%m")>="2021-10"
and shop_id="901" and status=1
)t_product
group by product_id
with rollup
order by product_id
)t
where product_id ="店铺汇总" or profit_rate>24.9方式二:
select
'店铺汇总' as pproduct_id,
concat(round((1-sum(in_price*cnt)/sum(price*cnt))*100,1),'%') as profit_rate
from
tb_product_info t
join tb_order_overall t1
join tb_order_detail t2
on t.product_id = t2.product_id and t1.order_id = t2.order_id
where shop_id=901and date(event_time)>='20211001'
union
select *
from
(
select
t.product_id as pproduct_id,
concat(round((1-sum(in_price*cnt)/sum(price*cnt))*100,1),'%') as profit_rate
from tb_product_info t
join tb_order_overall t1
join tb_order_detail t2
on t.product_id = t2.product_id and t1.order_id = t2.order_id
where shop_id=901
and date(event_time)>='20211001'
group by t.product_id
having 1-sum(in_price*cnt)/sum(price*cnt)>0.249
order by pproduct_id) t
4. 零食类商品中复购率top3高的商品 商品信息表tb_product_info
id | product_id | shop_id | tag | int_ | quantity | release_time |
---|---|---|---|---|---|---|
1 | 8001 | 901 | 零食 | 60 | 1000 | 2020-01-01 10:00:00 |
2 | 8002 | 901 | 零食 | 140 | 500 | 2020-01-01 10:00:00 |
3 | 8003 | 901 | 零食 | 160 | 500 | 2020-01-01 10:00:00 |
订单总表tb_order_overall
id | order_id | uid | event_time | total_amount | total_cnt | status |
---|---|---|---|---|---|---|
1 | 301001 | 101 | 2021-09-30 10:00:00 | 140 | 1 | 1 |
2 | 301002 | 102 | 2021-10-01 11:00:00 | 235 | 2 | 1 |
3 | 301011 | 102 | 2021-10-31 11:00:00 | 250 | 2 | 1 |
4 | 301003 | 101 | 2021-10-02 10:00:00 | 300 | 2 | 1 |
5 | 301013 | 105 | 2021-10-02 10:00:00 | 300 | 2 | 1 |
6 | 301005 | 104 | 2021-10-03 10:00:00 | 170 | 1 | 1 |
订单明细表tb_order_detail
id | order_id | product_id | price | cnt |
---|---|---|---|---|
1 | 301001 | 8002 | 150 | 1 |
2 | 301011 | 8003 | 200 | 1 |
3 | 301011 | 8001 | 80 | 1 |
4 | 301002 | 8001 | 85 | 1 |
5 | 301002 | 8003 | 180 | 1 |
6 | 301003 | 8002 | 140 | 1 |
7 | 301003 | 8003 | 180 | 1 |
8 | 301013 | 8002 | 140 | 2 |
9 | 301005 | 8003 | 180 | 1 |
场景逻辑说明:
- 用户将购物车中多件商品一起下单时,订单总表会生成一个订单(但此时未付款, status-订单状态-****订单状态为0表示待付款),在订单明细表生成该订单中每个商品的信息;
- 当用户支付完成时,在订单总表修改对应订单记录的status-订单状态-****订单状态为1表示已付款;
- 若用户退货退款,在订单总表生成一条交易总金额为负值的记录(表示退款金额,订单号为退款单号,订单状态为2表示已退款)。
注:复购率指用户在一段时间内对某商品的重复购买比例,复购率越大,则反映出消费者对品牌的忠诚度就越高,也叫回头率
此处我们定义:某商品复购率 = 近90天内购买它至少两次的人数 ÷ 购买它的总人数
近90天指包含最大日期(记为当天)在内的近90天。结果中复购率保留3位小数,并按复购率倒序、商品ID升序排序
输出示例:
示例数据的输出结果如下:
product_id | repurchase_rate |
---|---|
8001 | 1.000 |
8002 | 0.500 |
8003 | 0.333 |
商品8001、8002、8003都是零食类商品,8001只被用户102购买了两次,复购率1.000;
商品8002被101购买了两次,被105购买了1次,复购率0.500;
商品8003被102购买两次,被101和105各购买1次,复购率为0.333。
示例1
DROP TABLE IF EXISTS tb_order_overall;
CREATE TABLE tb_order_overall (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
order_id INT NOT NULL COMMENT '订单号',
uid INT NOT NULL COMMENT '用户ID',
event_time datetime COMMENT '下单时间',
total_amount DECIMAL NOT NULL COMMENT '订单总金额',
total_cnt INT NOT NULL COMMENT '订单商品总件数',
`status` TINYINT NOT NULL COMMENT '订单状态'
) CHARACTER SET utf8 COLLATE utf8_bin;
DROP TABLE IF EXISTS tb_product_info;
CREATE TABLE tb_product_info (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
product_id INT NOT NULL COMMENT '商品ID',
shop_id INT NOT NULL COMMENT '店铺ID',
tag VARCHAR(12) COMMENT '商品类别标签',
in_price DECIMAL NOT NULL COMMENT '进货价格',
quantity INT NOT NULL COMMENT '进货数量',
release_time datetime COMMENT '上架时间'
) CHARACTER SET utf8 COLLATE utf8_bin;
DROP TABLE IF EXISTS tb_order_detail;
CREATE TABLE tb_order_detail (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
order_id INT NOT NULL COMMENT '订单号',
product_id INT NOT NULL COMMENT '商品ID',
price DECIMAL NOT NULL COMMENT '商品单价',
cnt INT NOT NULL COMMENT '下单数量'
) CHARACTER SET utf8 COLLATE utf8_bin;
INSERT INTO tb_product_info(product_id, shop_id, tag, in_price, quantity, release_time) VALUES
(8001, 901, '零食', 60, 1000, '2020-01-01 10:00:00'),
(8002, 901, '零食', 140, 500, '2020-01-01 10:00:00'),
(8003, 901, '零食', 160, 500, '2020-01-01 10:00:00');
INSERT INTO tb_order_overall(order_id, uid, event_time, total_amount, total_cnt, `status`) VALUES
(301001, 101, '2021-09-30 10:00:00', 140, 1, 1),
(301002, 102, '2021-10-01 11:00:00', 235, 2, 1),
(301011, 102, '2021-10-31 11:00:00', 250, 2, 1),
(301003, 101, '2021-11-02 10:00:00', 300, 2, 1),
(301013, 105, '2021-11-02 10:00:00', 300, 2, 1),
(301005, 104, '2021-11-03 10:00:00', 170, 1, 1);
INSERT INTO tb_order_detail(order_id, product_id, price, cnt) VALUES
(301001, 8002, 150, 1),
(301011, 8003, 200, 1),
(301011, 8001, 80, 1),
(301002, 8001, 85, 1),
(301002, 8003, 180, 1),
(301003, 8002, 140, 1),
(301003, 8003, 180, 1),
(301013, 8002, 140, 2),
(301005, 8003, 180, 1);
输出8001|1.000
8002|0.500
8003|0.333
思路
1.计算每个用户对每个商品是否复购:
内连接多表:
tb_order_detail
JOIN tb_order_overall USING(order_id)
JOIN tb_product_info USING(product_id)
2.筛选零食类商品:WHERE tag="零食"
3.筛选近90天的记录:
计算最小允许日期:DATE_SUB(MAX(event_time), INTERVAL 89 DAY)
筛选:event_time >= (SELECT ... FROM tb_order_overall)
按用户和商品分组:GROUP BY uid, product_id
4.计算是否复购:IF(COUNT(event_time)>1, 1, 0) as repurchase
5.按商品分组:GROUP BY product_id
6.计算复购率:
SUM(repurchase) / COUNT(repurchase) as repurchase_rate
保留3位小数:ROUND(x, 3)
题解
SELECT product_id,
ROUND(SUM(repurchase) / COUNT(repurchase), 3) as repurchase_rate
FROM (
SELECT uid, product_id, IF(COUNT(event_time)>1, 1, 0) as repurchase
FROM tb_order_detail
JOIN tb_order_overall USING(order_id)
JOIN tb_product_info USING(product_id)
WHERE tag="零食" AND event_time >= (
SELECT DATE_SUB(MAX(event_time), INTERVAL 89 DAY)
FROM tb_order_overall
)
GROUP BY uid, product_id
) as t_uid_product_info
GROUP BY product_id
ORDER BY repurchase_rate DESC, product_id
LIMIT 3;
5. 10月的新户客单价和获客成本 商品信息表tb_product_info
id | product_id | shop_id | tag | int_ | quantity | release_time |
---|---|---|---|---|---|---|
1 | 8001 | 901 | 日用 | 60 | 1000 | 2020-01-01 10:00:00 |
2 | 8002 | 901 | 零食 | 140 | 500 | 2020-01-01 10:00:00 |
3 | 8003 | 901 | 零食 | 160 | 500 | 2020-01-01 10:00:00 |
4 | 8004 | 902 | 零食 | 130 | 500 | 2020-01-01 10:00:00 |
订单总表tb_order_overall
id | order_id | uid | event_time | total_amount | total_cnt | status |
---|---|---|---|---|---|---|
1 | 301002 | 102 | 2021-10-01 11:00:00 | 235 | 2 | 1 |
2 | 301003 | 101 | 2021-10-02 10:00:00 | 300 | 2 | 1 |
3 | 301005 | 104 | 2021-10-03 10:00:00 | 160 | 1 | 1 |
订单明细表tb_order_detail
id | order_id | product_id | price | cnt |
---|---|---|---|---|
1 | 301002 | 8001 | 85 | 1 |
2 | 301002 | 8003 | 180 | 1 |
3 | 301003 | 8004 | 140 | 1 |
4 | 301003 | 8003 | 180 | 1 |
5 | 301005 | 8003 | 180 | 1 |
问题:请计算2021年10月商城里所有新用户的首单平均交易金额(客单价)和平均获客成本(保留一位小数)。
注:订单的优惠金额 = 订单明细里的{该订单各商品单价×数量之和} - 订单总表里的{订单总金额} 。
输出示例:
示例数据的输出结果如下
avg_amount | avg_cost |
---|---|
231.7 | 23.3 |
2021年10月有3个新用户,102的首单为301002,订单金额为235,商品总金额为85+180=265,优惠金额为30;
101的首单为301003,订单金额为300,商品总金额为140+180=320,优惠金额为20;
104的首单为301005,订单金额为160,商品总金额为180,优惠金额为20;
平均首单客单价为(235+300+160)/3=231.7,平均获客成本为(30+20+20)/3=23.3
示例1
DROP TABLE IF EXISTS tb_order_overall;
CREATE TABLE tb_order_overall (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
order_id INT NOT NULL COMMENT '订单号',
uid INT NOT NULL COMMENT '用户ID',
event_time datetime COMMENT '下单时间',
total_amount DECIMAL NOT NULL COMMENT '订单总金额',
total_cnt INT NOT NULL COMMENT '订单商品总件数',
`status` TINYINT NOT NULL COMMENT '订单状态'
) CHARACTER SET utf8 COLLATE utf8_bin;
DROP TABLE IF EXISTS tb_product_info;
CREATE TABLE tb_product_info (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
product_id INT NOT NULL COMMENT '商品ID',
shop_id INT NOT NULL COMMENT '店铺ID',
tag VARCHAR(12) COMMENT '商品类别标签',
in_price DECIMAL NOT NULL COMMENT '进货价格',
quantity INT NOT NULL COMMENT '进货数量',
release_time datetime COMMENT '上架时间'
) CHARACTER SET utf8 COLLATE utf8_bin;
DROP TABLE IF EXISTS tb_order_detail;
CREATE TABLE tb_order_detail (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
order_id INT NOT NULL COMMENT '订单号',
product_id INT NOT NULL COMMENT '商品ID',
price DECIMAL NOT NULL COMMENT '商品单价',
cnt INT NOT NULL COMMENT '下单数量'
) CHARACTER SET utf8 COLLATE utf8_bin;
INSERT INTO tb_product_info(product_id, shop_id, tag, in_price, quantity, release_time) VALUES
(8001, 901, '日用', 60, 1000, '2020-01-01 10:00:00'),
(8002, 901, '零食', 140, 500, '2020-01-01 10:00:00'),
(8003, 901, '零食', 160, 500, '2020-01-01 10:00:00'),
(8004, 902, '零食', 130, 500, '2020-01-01 10:00:00');
INSERT INTO tb_order_overall(order_id, uid, event_time, total_amount, total_cnt, `status`) VALUES
(301002, 102, '2021-10-01 11:00:00', 235, 2, 1),
(301003, 101, '2021-10-02 10:00:00', 300, 2, 1),
(301005, 104, '2021-10-03 10:00:00', 160, 1, 1);
INSERT INTO tb_order_detail(order_id, product_id, price, cnt) VALUES
(301002, 8001, 85, 1),
(301002, 8003, 180, 1),
(301003, 8004, 140, 1),
(301003, 8003, 180, 1),
(301005, 8003, 180, 1);
输出231.7|23.3
题解
select
round(sum(total_amount)/count(distinct order_id),1) avg_amount,
round(sum(price-total_amount)/count(distinct order_id),1) avg_cost
from tb_order_overall
join
(
select order_id,sum(price*cnt) price
from tb_order_detail
group by order_id
) t
using(order_id)
where (uid,date(event_time))in
(
select uid,min(date(event_time)) min_day
from tb_order_overall
group by uid
having date_format(min_day,"%Y-%m")="2021-10"
)
推荐阅读
- 数据库|MySQL 事务四大特性和事务隔离级别
- 编程选择|Java结构化数据处理开源库SPL
- 大数据|Java 结构化数据处理开源库 SPL
- Navicat远程连接Linux下的mariadb数据库
- 记录一次数据库drop磁盘组,drop磁盘组中盘的操作。
- python 包之 redis 数据库操作教程
- AWS RDS Mysql 跨账号迁移
- python 包之 mongodb 数据库操作教程
- 小程序+云服务器|微信小程序+nginx+php+mysql实现数据库管理【第一期】数据库与php的正确连接