1.大规模机器学习
1.1 大型数据集的学习 在线性回归模型中,如果使用的数据集样本数很大,由于每进行一次梯度下降都需要计算整个训练集的误差的平方和,这需要较大的计算量。所以首先应该做去检查要训练出一个较好的模型是否需要大数据集,可以绘制学习曲线来帮助判断。从左子图中较大的 J c v ( θ ) J_{cv}(\theta) Jcv?(θ)的值可以看出该模型是一个高方差的模型(即过拟合),所以增加训练样本可以提升模型效果;从右子图中较大的 J t r a i n ( θ ) J_{train}(\theta) Jtrain?(θ)的可以看出模型是一个高偏差的模型(即欠拟合),所以增加训练样本无法提升模型效果
文章图片
1.2 随机梯度下降法(Stochastic Gradient Descent) 考虑训练集所有样本数的梯度下降法称为批量梯度下降,如果采用该方法时数据量过大会导致计算成本过高(比如需要一次将所有数据加载到内存中)。如果需要大规模的训练集,可以尝试使用随机梯度下降法(SGD)来代替批量梯度下降法
SGD中定义代价函数为对单一训练实例的代价,即 c o s t ( θ ) = 1 2 ( h θ ( x ( i ) ) ? y ( i ) ) ) 2 , J ( θ ) = 1 m ∑ i = 1 m c o s t ( θ ) cost(\theta)=\frac{1}{2}(h_\theta(x^{(i)})-y^{(i)}))^2,J(\theta)=\frac{1}{m}\sum_{i=1}^mcost(\theta) cost(θ)=21?(hθ?(x(i))?y(i)))2,J(θ)=m1?∑i=1m?cost(θ)。对于的梯度下降过程为:
- 随机打乱训练集
- 遍历所有的训练集样本 i i i,更新每一个特征 j j j,即 θ : = θ j ? α ( h θ ( x ( i ) ? y ( i ) ) ) x j ( i ) \theta:=\theta_j-\alpha(h_\theta(x^{(i)}-y^{(i)}))x_j^{(i)} θ:=θj??α(hθ?(x(i)?y(i)))xj(i)?
文章图片
1.3 小批量梯度下降(Mini-Batch Gradient Descent) 【机器学习|吴恩达机器学习课程-第十周】小批量梯度下降即介于批量梯度下降和SGD之间的算法,每次计算 b ∈ ( 1 , m ) b\in(1,m) b∈(1,m)个训练实例就更新一次参数,过程如下所示:
文章图片
?相较于批量梯度下降优势依旧是梯度更新速度快,不需要一次将所有数据加载到内存中;相较于SGD的优势在于可以并行计算梯度。该方式的缺点在于需要确定 b b b值的大小
1.4 随机梯度下降收敛 在批量梯度下降中可以根据画出 J ( θ ) J(\theta) J(θ)和 i t e r iter iter的关系图来判断梯度下降是否收敛。但是在大规模的训练集的情况下,要进行多次迭代训练计算代价太大。而在SGD中每次采用样本 ( x ( i ) , y ( i ) ) (x^{(i)},y^{(i)}) (x(i),y(i))更新梯度前都计算一次代价 c o s t ( θ , ( x ( i ) , y ( i ) ) cost(\theta,(x^{(i)},y^{(i)}) cost(θ,(x(i),y(i)),每训练 k k k个样本就计算这些样本代价的平均值,然后画出均值与每次迭代(经过 k k k个样本算一次迭代)的次数之间的函数图表
?假设随着迭代次数的增加,代价均值在不断上升,此时可以考虑将学习率随着迭代次数的增加而减小,比如 α = c o n s t 1 i t e r N u m + c o n s t 2 \alpha=\frac{const1}{iterNum+const2} α=iterNum+const2const1?,这样就迫使算法收敛而不是在最小值附近震荡
2.参考 https://www.bilibili.com/video/BV164411b7dx?p=102-105
http://www.ai-start.com/ml2014/html/week10.html
推荐阅读
- 超简单集成华为HMS MLKit 机器学习服务 银行卡识别SDK,一键实现银行卡绑定
- #|YOLOv5的Tricks | 【Trick8】图片采样策略——按数据集各类别权重采样
- 度量学习|Softmax Loss、Softtriplet Loss
- pybullet|pybullet-GGCNN神经网络搭建及训练
- AI人工智能(调包侠)速成之路|AI人工智能(调包侠)速成之路十四(中国象棋AI网络机器人(AI技术综合应用实现))
- 数据分析师|【机器学习】逻辑回归案例二(鸢尾花数据分类,决策边界绘制逐步代码讲解)
- sklearn|机器学习-处理鸢尾花数据集
- 人工智能|机器学习算法之鸢尾花数据不同分类器效果比较
- #|回归预测 | MATLAB实现RBF径向基神经网络非线性函数回归