四种算法介绍 1. 先来先服务算法(FCFS)
FCFS是最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。当在作业调度中采用该算法时,系统将按照作业到达的先后次序来进行调度,或者说它是优先考虑在系统中等待时间最长的作业,而不管该作业所需执行时间的长短,从后备作业队列中选择几个最先进入该队列的作业,将它们调入内存,为它们分配资源和创建进程。然后把它放入就绪队列。当在进程调度中采用FCFS算法时,每次调度是从就绪的进程队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后,进程调度程序才将处理机分配给其它进程。顺便说明,FCFS算法在单处理机系统中已很少作为主调度算法,但经常把它与其它调度算法相结合使用,形成- -种更为有效的调度算法。例如,可以在系统中按进程的优先级
设置多个队列,每个优先级- -个队列,其中每一个队列的调度都基于FCFS算法。
2. 短作业优先调度算法(SJF):
由于在实际情况中,短作业(进程)占有很大比例,为了能使它们能比长作业优先执行,而产生了短作业优先调度算法。
(1)短作业优先算法SJF算法是以作业的长短来计算优先级,作业越短,其优先级越高。作业的长短是以作业所要求的运行时间来衡量的。SJF 算法可以分别用于作业调度和进程调度。在把短作业优先调度算法用于作业调度时,它将从外存的作业后备队列中选择若干个估计运行时间最短的作业,优先将它们调入内存运行。
(2)短作业优先算法的缺点:
SJF调度算法较之FCFS算法有了明显的改进,但仍然存在不容忽视的缺点:
(1)必须预知作业的运行时间。在采用这种算法时,要先知道每个作业的运行时间。即使是程序员也很难准确估计作业的运行时间,如果估计过低,系统就可能按估计的时间终止作业的运行,但此时作业并未完成,故一般都会偏长估计。
(2)对长作业非常不利,长作业的周转时间会明显地增长。更严重的是,该算法完全忽视作业的等待时间,可能使作业等待时间过长,出现饥饿现象。
(3)在采用FCFS算法时,人----机无法实现交互。
(4)该调度算法完全未考虑作业的紧迫程度,故不能保证紧迫性作业能得到及时处理。
3. 时间片轮转调度算法(RR)
在轮转(RR)法中,系统将所有的就绪进程按FCFS策略排成-一个就绪队列。系统可设置每隔一定时间(如30 ms)便产生一次中断,去激活进程调度程序进行调度,把CPU分配给队首进程,并令其执行一个时间片。当它运行完毕后,又把处理机分配给就绪队列中新的队首进程,也让它执行-一个时间片。这样,就可以保证就绪队列中的所有进程在确定的时间段内,都能获得一个时间片的处理机时间。
4. 优先级调度算法(非抢占式)
我们可以这样来看作业的优先级,对于先来先服务调度算法,作业的等待时间就是作业的优先级,等待时间越长,其优先级越高。对于短作业优先调度算法,作业的长短就是作业的优先级,作业所需运行的时间越短,其优先级越高。但上述两种优先级都不能反映作业的紧迫程度。而在优先级调度算法中,则是基于作业的紧迫程度,由外部赋予作业相应的优先级,调度算法是根据该优先级进行调度的。这样就可以保证紧迫性作业优先运行。优先级调度算法可作为作业调度算法,也可作为进程调度算法。当把该算法用于作业调度时,系统是从后备队列中选择若千个优先级最高的作业装入内存。
直接代码(实验原因封装在一块)
VS2019运行
#if 1#include
#include
using namespace std;
#define TIME_SLICE 2typedef struct PCB
{
char name[10];
//此为进程id
char state;
//进程状态w/r
int Arrivetime;
//进程到达时间
int BeginTime;
//进程开始时间
int FinishTime;
//进程结束时间
intServerTime;
//进程服务时间
float wholeTime;
//周转时间
float Weight_wholetime;
//带权周转时间
double Average_wholeTime;
//平均周转时间
double Average_weight_wholetime;
//带权平均周转时间 intRunTime;
//已经占用cpu时间
intNeedTime;
//还需要cpu时间 intPrio;
//优先级
struct PCB* next;
}pcb, * Pcb;
int Proc_Num = 0;
//进程数目void head_Show(Pcb proc)//输入打印
{
assert(proc != NULL);
printf("PCB_ID优先级数到达时间服务时间\n");
while (proc != NULL)
{
printf("%6s%6d%6d%6d\n",
proc->name, proc->Prio,
proc->Arrivetime, proc->ServerTime);
proc = proc->next;
}
}
void Show(Pcb proc)
{
assert(proc != NULL);
double sum_wholeTime = 0;
double sum_weight_wholetime = 0;
pcb* p = proc;
while (p != NULL)
{
sum_wholeTime += p->wholeTime;
sum_weight_wholetime += p->Weight_wholetime;
p = p->next;
}
double Average_wholeTim = sum_wholeTime / Proc_Num;
double Average_weight_wholetime = sum_weight_wholetime / Proc_Num;
printf("PCB_ID到达时间开始时间服务时间完成时间周转时间带权周转时间\n");
while (proc != NULL)
{
printf("%6s%6d%6d%6d%6d%8.1f%8.2f\n",
proc->name,
proc->Arrivetime, proc->BeginTime, proc->ServerTime,
proc->FinishTime, proc->wholeTime, proc->Weight_wholetime);
proc = proc->next;
}
printf("平均周转时间平均带权周转时间\n");
printf("%10.2f%10.2f\n", Average_wholeTim,
Average_weight_wholetime);
}
Pcb PCB_Create()//创建输入链表
{
cout << "请输入进程个数:";
cin >> Proc_Num;
pcb* _head = NULL;
pcb* _tail = NULL;
if (Proc_Num > 6000)
{
return NULL;
}
cout << "请输入PCB名称、优先级、到达时间、服务时间" << endl;
for (int i = 1;
i <= Proc_Num;
i++)
{
pcb* new_proc = (pcb*)malloc(sizeof(pcb));
assert(NULL != new_proc);
cin >> new_proc->name >> new_proc->Prio >> new_proc->Arrivetime >> new_proc->ServerTime;
new_proc->next = NULL;
if (NULL == _head)
{
_tail = new_proc;
_head = new_proc;
}
else
{
_tail->next = new_proc;
_tail = new_proc;
}
}
return _head;
}
Pcb Sort_Arrivetime(Pcb list)//时间先后顺序排序
{
assert(NULL != list);
pcb* new_head = (pcb*)malloc(sizeof(pcb));
assert(NULL != new_head);
new_head->Arrivetime = 0;
new_head->ServerTime = 0;
new_head->next = NULL;
pcb* head = NULL;
while (list != NULL)
{
pcb* cur = list;
list = list->next;
cur->next = NULL;
if (new_head->next == NULL)
{
new_head->next = cur;
}
else
{
pcb* ptr = new_head;
for (ptr;
ptr->next != nullptr;
ptr = ptr->next);
if (cur->Arrivetime >= ptr->Arrivetime)
{
ptr->next = cur;
}
else
{
pcb* p = new_head;
while (cur->Arrivetime > p->next->Arrivetime)
{
p = p->next;
}
cur->next = p->next;
p->next = cur;
}
}
}
return new_head->next;
}
Pcb Sort_Shortjob(Pcb list)//短作业排序链表
{
assert(NULL != list);
pcb* new_head = (pcb*)malloc(sizeof(pcb));
assert(NULL != new_head);
new_head->Arrivetime = 0;
new_head->ServerTime = 0;
new_head->next = NULL;
pcb* head = NULL;
while (list != NULL)
{
pcb* cur = list;
list = list->next;
cur->next = NULL;
if (new_head->next == NULL)
{
new_head->next = cur;
}
else
{
pcb* ptr = new_head;
for (ptr;
ptr->next != nullptr;
ptr = ptr->next);
if (cur->ServerTime >= ptr->ServerTime)
{
ptr->next = cur;
}
else
{
pcb* p = new_head;
while (cur->ServerTime > p->next->ServerTime)
{
p = p->next;
}
cur->next = p->next;
p->next = cur;
}
}
}
return new_head;
}
void RR_runprocces(PCB* proc)//时间片轮转
{
int _time = proc->Arrivetime;
int flag = 0;
pcb* p = proc;
for (p;
p != NULL;
p = p->next)
{
flag++;
}
pcb* p1 = proc;
for (p1;
p1->next != NULL;
p1 = p1->next);
p1->next = proc;
pcb* ptr = proc;
while (flag != 0)
{
if (ptr->Arrivetime <= _time)
{if (ptr->state == 'W')
{
cout << "时刻" << _time << "开始执行" << ptr->name << endl;
_time += TIME_SLICE;
ptr->RunTime += TIME_SLICE;
ptr->NeedTime = ptr->ServerTime - ptr->RunTime;
if (ptr->NeedTime >= -1)
{cout << "时刻" << _time << "挂起作业" << ptr->name;
cout << "已运行" << ptr->RunTime << "还需要执行" << ptr->NeedTime << endl;
cout << endl;
if (ptr->NeedTime <= 0)
{
cout << "时刻" << _time << "作业消失" << ptr->name << endl;
cout << endl;
flag--;
ptr->state = 'P';
}
ptr = ptr->next;
}
else
{
cout << "时刻" << _time << "作业消失" << ptr->name << endl;
cout << endl;
flag--;
ptr->state = 'P';
ptr = ptr->next;
}
}
}
else
{
ptr = ptr->next;
}
}Pcb End_list(Pcb plist)//最终链表
{
assert(NULL != plist);
int begin_time = plist->Arrivetime;
plist->BeginTime = begin_time;
int end_time = begin_time + plist->ServerTime;
plist->FinishTime = end_time;
plist->wholeTime = (float)(plist->FinishTime - plist->Arrivetime);
plist->Weight_wholetime = (float)(plist->wholeTime / plist->ServerTime);
plist->state = 'W';
plist->RunTime = 0;
pcb* ptr = plist->next;
while (ptr != NULL)
{
ptr->BeginTime = end_time;
ptr->FinishTime = end_time + ptr->ServerTime;
end_time += ptr->ServerTime;
ptr->wholeTime = (float)(ptr->FinishTime - ptr->Arrivetime);
ptr->Weight_wholetime = (float)(ptr->wholeTime / ptr->ServerTime);
ptr->state = 'W';
ptr->RunTime = 0;
ptr = ptr->next;
} return plist;
}
Pcb Sort_SJFjob(Pcb list, int time)
{
assert(NULL != list);
pcb* ptr_head = Sort_Shortjob(list);
pcb* head_node = (pcb*)malloc(sizeof(pcb));
assert(head_node != NULL);
head_node->Arrivetime = 0;
head_node->ServerTime = 0;
head_node->Prio = 0;
head_node->next = NULL;
while (ptr_head->next!= NULL)
{
pcb* a = ptr_head->next;
if (a->next == NULL)
{
pcb* tail = head_node;
for (tail;
tail->next != NULL;
tail = tail->next);
tail->next = a;
ptr_head->next = NULL;
}
else
{
while (a->Arrivetime > time&&a->next!=NULL)
{
a = a->next;
}
if (a->next == NULL&&a->Arrivetime>time)
{
pcb* e = ptr_head->next;
ptr_head->next = NULL;
pcb* d = Sort_Arrivetime(e);
pcb* s = d->next;
d->next = NULL;
time = time + d->ServerTime;
pcb* tail = head_node;
for (tail;
tail->next != NULL;
tail = tail->next);
tail->next = d;
pcb* l = Sort_Shortjob(s);
pcb* j = l->next;
l->next = NULL;
ptr_head->next = j;
}
else
{
pcb* c = ptr_head;
while (c->next != a)
{
c = c->next;
}
c->next = a->next;
a->next = NULL;
time = time + a->ServerTime;
pcb* tail = head_node;
for (tail;
tail->next != NULL;
tail = tail->next);
tail->next = a;
}
} }
pcb* back_head = head_node->next;
head_node->next = NULL;
free(head_node);
head_node = NULL;
return back_head;
}
Pcb Sort_SJF(Pcb list)
{
assert(list != NULL);
pcb* head = Sort_Arrivetime(list);
int _time = head->Arrivetime + head->ServerTime;
if (head->next != NULL)
{
pcb* ptr = head->next;
head->next = NULL;
pcb* _head = Sort_SJFjob(ptr,_time);
head->next = _head;
}
return head;
}
Pcb Sort_PRC(Pcb list)
{
assert(NULL != list);
pcb* new_head = (pcb*)malloc(sizeof(pcb));
assert(NULL != new_head);
new_head->Arrivetime = 0;
new_head->ServerTime = 0;
new_head->Prio = 0;
new_head->next = NULL;
pcb* head = NULL;
while (list != NULL)
{
pcb* cur = list;
list = list->next;
cur->next = NULL;
if (new_head->next == NULL)
{
new_head->next = cur;
}
else
{
pcb* ptr = new_head;
for (ptr;
ptr->next != nullptr;
ptr = ptr->next);
if (ptr->Prio >= cur->Prio)
{
ptr->next = cur;
}
else
{
pcb* p = new_head;
while (p->next->Prio > cur->Prio)
{
p = p->next;
}
cur->next = p->next;
p->next = cur;
}
}
}
return new_head;
}
Pcb Sort_Prcjob(Pcb list, int time)
{
assert(NULL != list);
pcb* ptr_head = Sort_PRC(list);
pcb* head_node = (pcb*)malloc(sizeof(pcb));
assert(head_node != NULL);
head_node->Arrivetime = 0;
head_node->ServerTime = 0;
head_node->Prio = 0;
head_node->next = NULL;
while (ptr_head->next != NULL)
{
pcb* a = ptr_head->next;
if (a->next == NULL)
{
pcb* tail = head_node;
for (tail;
tail->next != NULL;
tail = tail->next);
tail->next = a;
ptr_head->next = NULL;
}
else
{
while (a->Arrivetime > time && a->next != NULL)
{
a = a->next;
}
if (a->next == NULL && a->Arrivetime > time)
{
pcb* b = ptr_head->next;
ptr_head->next = b->next;
b->next = NULL;
time = time + b->ServerTime;
pcb* tail = head_node;
for (tail;
tail->next != NULL;
tail = tail->next);
tail->next = b;
}
else
{
pcb* c = ptr_head;
while (c->next != a)
{
c = c->next;
}
c->next = a->next;
a->next = NULL;
time = time + a->ServerTime;
pcb* tail = head_node;
for (tail;
tail->next != NULL;
tail = tail->next);
tail->next = a;
}
} }
pcb* back_head = head_node->next;
head_node->next = NULL;
free(head_node);
head_node = NULL;
return back_head;
}
Pcb Sort_Prc(Pcb list)
{
assert(list != NULL);
pcb* head = Sort_Arrivetime(list);
int _time = head->Arrivetime + head->ServerTime;
if (head->next != NULL)
{
pcb* ptr = head->next;
head->next = NULL;
pcb* _head = Sort_Prcjob(ptr, _time);
head->next = _head;
}
return head;
}
void FCFS()//先来先服务
{
pcb* head = PCB_Create();
printf("\t\t算法调度前如下:\n");
head_Show(head);
putchar('\n');
printf("\t\t\t\t算法调度后如下:\n");
pcb* end_head = Sort_Arrivetime(head);
struct PCB* list = End_list(end_head);
Show(list);
}
void SJF()
{
pcb* head = PCB_Create();
printf("\t\t算法调度前如下:\n");
head_Show(head);
putchar('\n');
printf("\t\t\t\t算法调度后如下:\n");
pcb* end = Sort_SJF(head);
pcb* list = End_list(end);
Show(list);
}
void PrioCreate()
{
pcb* head = PCB_Create();
printf("\t\t算法调度前如下:\n");
head_Show(head);
putchar('\n');
printf("\t\t\t\t算法调度后如下:\n");
pcb* end = Sort_Prc(head);
pcb* list = End_list(end);
Show(list);
}
void RR()//时间片轮转算法
{
pcb* head = PCB_Create();
printf("\t\t算法调度前如下:\n");
head_Show(head);
putchar('\n');
printf("\t\t\t\t算法调度后如下:\n");
pcb* end_head = Sort_Arrivetime(head);
struct PCB* list = End_list(end_head);
RR_runprocces(list);
}
int main()
{
int select = 1;
while (select)
{
cout << "******************************************\n";
cout << "*****1.******* 先来先服务算法 ************\n";
cout << "*****2.********短作业优先************\n";
cout << "*****3.********时间片轮转************\n";
cout << "*****4.****响应比高者优先调度*********\n";
cout << "*****0.**********退出*********************\n";
cout << "请选择:> ";
cin >> select;
switch (select)
{
case 1:FCFS();
break;
case 2:
SJF();
break;
case 3:
RR();
break;
case 4:
PrioCreate();
break;
default:
break;
}
}
return 0;
}
#endif
第一次写不太好见谅
测试用例以:
A 10 4 3
B 2 5 8
C 9 6 5
D 6 9 2
开始界面,功能选项:
文章图片
算法1:
文章图片
算法2:
文章图片
算法3:
文章图片
算法4:
文章图片
【操作系统|操作系统四种进程调度算法C/c++语言(先来先服务(FCFS)短作业优先算法(SJF)优先级调度算法(PSA)时间片轮转算法(RR))】OK!!!!!
推荐阅读
- 操作系统|操作系统动态分区分配方式C/C++语言(首次适应算法(FF)循环首次适应算法(NF)最best适应算法(BF)最坏适应算法(WF))
- leetcode周赛记录|第一次打leetcode周赛复盘——第286场周赛
- 简介|B_QuRT_User_Guide(26)
- iNeuOS工业互联网操作系统,增加搜索应用多数据源绑定视图背景设置颜色多级别文件夹组合及拆分图元
- C#|winform Dev GridView 控件常用属性总结
- c#|原创C# Winform+DevExpress皮肤框架
- c#devexpress GridContorl添加进度条
- C# DevExpress之GridView同步滚动条记录方法
- DevExpress|DevExpress表格控件(GridView、GridControl)使用小结