五大常用算法简述

分治法 基本思想 将一个问题,分解为多个子问题,递归的去解决子问题,最终合并为问题的解
适用情况 问题分解为小问题后容易解决
问题可以分解为小问题,即最优子结构
分解后的小问题解可以合并为原问题的解
小问题之间互相独立
实例

  1. 二分查找
  2. 快速排序
  3. 合并排序
  4. 大整数乘法
  5. 循环赛日程表
动态划分算法 基本思想 将问题分解为多个子问题(阶段),按顺序求解,前一个问题的解为后一个问题提供信息
适用情况
  1. 最优化原理:问题的最优解所包含的子问题的解也是最优的,即最优子结构
  2. 无后效性:某个状态一旦确定,就不受以后决策的影响
  3. 有重叠子问题
说明 递推关系是从次小的问题开始到较大问题的转化,往往可以用递归来实现,可以利用之前产生的子问题的解来减少重复的计算
回溯法 基本思想 选优搜索法,走不通就退回重选,按照深度优先搜索的策略,从根节点出发,深度搜索解空间
步骤 确定解空间
确定节点的扩展搜索规则
深度优先方式搜索解空间,用剪枝法避免无效搜索
分支界限法 基本思想 与回溯法类似,也是在解空间里搜索解得算法,不同点是,回溯法寻找所有解,分支界限法搜索一个解或者最优解
分支:广度优先策略或者最小耗费(最大效益)优先
分支搜索方式:FIFO、LIFO、优先队列式、分支界限搜索算法
贪心算法 基本思想 不从总体最优考虑,仅考虑局部最优解,问题必须具备后无效性
步骤 将问题分解为多个子问题
得到问题的局部最优解
合并子问题的局部最优解
适用情况
  1. 局部最优策略能导致全局最优解
  2. 子问题后无效性
个人介绍:
高广超:多年一线互联网研发与架构设计经验,擅长设计与落地高可用、高性能、可扩展的互联网架构。
【五大常用算法简述】本文首发在 高广超的博客 转载请注明!
五大常用算法简述
文章图片
博客 五大常用算法简述
文章图片
头条号

    推荐阅读