StarRocks|使用StarRocks内置工具Routine Load同步Mysql/TiDB/PG等增量更新数据到StarRocks

什么是StarRocks?

StarRocks是新一代极速统一的olap新型mpp分析型数据库,全面向量化引擎,全新的CBO优化器,性能强悍,单表查询媲美业界最强悍的clickhouse,支持多表join,支持数据秒级更新;
且同时支持高并发,架构极简,方便运维扩展,完全国产,安全可控,在国内外各行各业已经得到了广泛使用。
StarRocks提供了丰富的数据接入方式:stream load,routine load,broker load,spark load等,对接比如本地文件,对象存储,hdfs,数据库,kafka,还可以使用flink cdc方式同步数据到starrocks,也支持开源工具比如datax,seatunnel等,也定制了flink connector source/sink 到starrocks。具体可以参考官网文档:https://docs.starrocks.com/zh-cn/main/loading/Loading_intro
本文示例如何通过Routine load工具通过kafka将TP类型的增量数据方便快捷同步到StarRocks中(除了下文使用到的方法,也可以使用flink cdc借助flink sql同步)
Routine Load原理:
StarRocks|使用StarRocks内置工具Routine Load同步Mysql/TiDB/PG等增量更新数据到StarRocks
文章图片

导入流程如上图:

  1. 用户通过支持MySQL协议的客户端向 FE 提交一个Kafka导入任务。
  2. FE将一个导入任务拆分成若干个Task,每个Task负责导入指定的一部分数据。
  3. 每个Task被分配到指定的 BE 上执行。在 BE 上,一个 Task 被视为一个普通的导入任务, 通过 Stream Load 的导入机制进行导入。
  4. BE导入完成后,向 FE 汇报。
  5. FE 根据汇报结果,继续生成后续新的 Task,或者对失败的 Task 进行重试。
  6. FE 会不断的产生新的 Task,来完成数据不间断的导入。
实验环境: Mysql +Canal + Kafka + StarRocks
测试步骤:
1.开启mysql binlog
确认mysql binlog已经开启:
[mysqld] log-bin=mysql-bin # 开启 binlog binlog-format=ROW # 选择 ROW 模式 server_id=2# 配置 MySQL replaction 需要定义,不要和 canal 的 slaveId 重复

也可以在mysql中通过show variables like '%xxx%'方式确认相关配置已经开启;
2.配置好canal环境,使数据sink到kakfa
配置两个文件,conf/canal.properties, conf/exmaple/instance.properties,启动canal;
3.准备好StarRocks集群
方便测试一个节点就可以,生产环境推荐至少3台服务器以上,分布式部署,多副本,保障数据的不丢失以及服务的高可用;
4.建好kafka topic
kafka中数据格式:
{"data":[{"id":"401","k1":"st","v1":"401"}],"database":"gong","es":1648790506000,"id":19,"isDdl":false,"mysqlType":{"id":"int(11)","k1":"varchar(25)","v1":"int(11)"},"old":null,"pkNames":["id"],"sql":"","sqlType":{"id":4,"k1":12,"v1":4},"table":"gong_cdc","ts":1648790506948,"type":"INSERT"} {"data":[{"id":"401","k1":"st","v1":"401"}],"database":"gong","es":1648790577000,"id":20,"isDdl":false,"mysqlType":{"id":"int(11)","k1":"varchar(25)","v1":"int(11)"},"old":null,"pkNames":["id"],"sql":"","sqlType":{"id":4,"k1":12,"v1":4},"table":"gong_cdc","ts":1648790577916,"type":"DELETE"} {"data":[{"id":"402","k1":"st","v1":"402"}],"database":"gong","es":1648790789000,"id":21,"isDdl":false,"mysqlType":{"id":"int(11)","k1":"varchar(25)","v1":"int(11)"},"old":null,"pkNames":["id"],"sql":"","sqlType":{"id":4,"k1":12,"v1":4},"table":"gong_cdc","ts":1648790797431,"type":"INSERT"} {"data":[{"id":"402","k1":"st","v1":"402"}],"database":"gong","es":1648790832000,"id":22,"isDdl":false,"mysqlType":{"id":"int(11)","k1":"varchar(25)","v1":"int(11)"},"old":null,"pkNames":["id"],"sql":"","sqlType":{"id":4,"k1":12,"v1":4},"table":"gong_cdc","ts":1648790832760,"type":"DELETE"} {"data":[{"id":"403","k1":"st","v1":"403"}],"database":"gong","es":1648791354000,"id":23,"isDdl":false,"mysqlType":{"id":"int(11)","k1":"varchar(25)","v1":"int(11)"},"old":null,"pkNames":["id"],"sql":"","sqlType":{"id":4,"k1":12,"v1":4},"table":"gong_cdc","ts":1648791354904,"type":"INSERT"} {"data":[{"id":"403","k1":"st","v1":"403"}],"database":"gong","es":1648791385000,"id":24,"isDdl":false,"mysqlType":{"id":"int(11)","k1":"varchar(25)","v1":"int(11)"},"old":null,"pkNames":["id"],"sql":"","sqlType":{"id":4,"k1":12,"v1":4},"table":"gong_cdc","ts":1648791395247,"type":"DELETE"}

可以看到在mysql binlog输出到kafka中的json数据,后面都会有一个type字段,类型为insert,update or delete,StarRocks正是通过去解析这个字段类型,来做后续在内部的添加,更新,删除数据。
5.建好在StarRocks中建好routine load job
create routine load gong.cdc0401 on cdc_0401 columns(id,k1,v1,temp,__op=(CASE temp WHEN "DELETE" THEN 1 ELSE 0 END))PROPERTIES ("format"="json","jsonpaths"="[\"$.data[0].id\",\"$.data[0].k1\",\"$.data[0].v1\",\"$.type\"]","desired_concurrent_number"="1", "max_error_number"="1000","max_batch_interval"="5","strict_mode" = "false")FROM KAFKA ("kafka_broker_list"= "cs01:9092,cs02:9092,cs03:9092","kafka_topic" = "gong_test","kafka_partitions"="0","kafka_offsets"="OFFSET_BEGINNING");

需要注意的是,columns和jsonpath部分较容易弄错,参考StarRocks 论坛文章:https://forum.starrocks.com/t/topic/851

6.验证:测试,在mysql中insert,update,delete数据,是否同步到starrocks
mysql中插入数据,再删除:
MariaDB [gong]> insert into gong_cdc values(98777777,"987",9888888); Query OK, 1 row affected (0.00 sec)MariaDB [gong]> delete from gong_cdc where id = 98777777; Query OK, 1 row affected (0.00 sec)mysql> select * from cdc_0401; +----------+-----------+---------+ | id| k1| v1| +----------+-----------+---------+ |321 | 3321|321 | |444 | main|1 | |666 | starrocks |666 | |777 | 777|777 | |888 | 777|888 | |987 | 987|987 | |10086 | cheng|1 | |11111 | sr|1 | |30003 | sr|30 | |88888 | 88888|8888 | |100002 | march|1 | |100003 | gong|1 | |200000 | cheng|1 | | 98777777 | 987| 9888888 | +----------+-----------+---------+ 14 rows in set (0.01 sec)

在StarRocks sql cli端check routine load任务是否正常,以及报错等:
mysql> show routine load\G; *************************** 1. row *************************** Id: 10252 Name: cdc0401 CreateTime: 2022-04-01 17:01:15 PauseTime: NULL EndTime: NULL DbName: default_cluster:gong TableName: cdc_0401 State: RUNNING DataSourceType: KAFKA CurrentTaskNum: 1 JobProperties: {"partitions":"*","columnToColumnExpr":"id,k1,v1,temp,__op=(CASE `temp` WHEN 'DELETE' THEN 1 ELSE 0 END)","maxBatchIntervalS":"5","whereExpr":"*","dataFormat":"json","timezone":"Asia/Shanghai","format":"json","json_root":"","strict_mode":"false","jsonpaths":"[\"$.data[0].id\",\"$.data[0].k1\",\"$.data[0].v1\",\"$.type\"]","desireTaskConcurrentNum":"1","maxErrorNum":"100000","strip_outer_array":"false","currentTaskConcurrentNum":"1","maxBatchRows":"200000"} DataSourceProperties: {"topic":"gong_test","currentKafkaPartitions":"0","brokerList":"cs01:9092,cs02:9092,cs03:9092"} CustomProperties: {} Statistic: {"receivedBytes":1787751,"errorRows":3001,"committedTaskNum":3,"loadedRows":41,"loadRowsRate":0,"abortedTaskNum":0,"totalRows":3042,"unselectedRows":0,"receivedBytesRate":198000,"taskExecuteTimeMs":9028} Progress: {"0":"3041"} ReasonOfStateChanged: ErrorLogUrls: http://172.26.194.184:29122/api/_load_error_log?file=__shard_5/error_log_insert_stmt_5752f798-7efa-47d8-b7ba-fcbc08dcfad5_5752f7987efa47d8_b7bafcbc08dcfad5 OtherMsg: 1 row in set (0.00 sec)ERROR: No query specified

check数据是否同步到StarRocks:
mysql> select * from cdc_0401; +--------+-----------+------+ | id| k1| v1| +--------+-----------+------+ |321 | 3321|321 | |444 | main|1 | |666 | starrocks |666 | |777 | 777|777 | |888 | 777|888 | |987 | 987|987 | |10086 | cheng|1 | |11111 | sr|1 | |30003 | sr|30 | |88888 | 88888| 8888 | | 100002 | march|1 | | 100003 | gong|1 | | 200000 | cheng|1 | +--------+-----------+------+ 13 rows in set (0.00 sec)

查看starrocks的数据,确实先进来,后删除了,同时也可以随时查看routie load job运行状况,确保任务没有异常,这样子数据才能同步进来;

7.测试过程碰到的问题
【StarRocks|使用StarRocks内置工具Routine Load同步Mysql/TiDB/PG等增量更新数据到StarRocks】 问题一:创建routine load方式如下
create routine load gong.cdc0401 on cdc_0401 columns(id,k1,v1) PROPERTIES ( "format"="json", "desired_concurrent_number"="1", "max_error_number"="100", "max_batch_interval"="5", "strict_mode" = "false" ) FROM KAFKA ( "kafka_broker_list"= "cs01:9092,cs02:9092,cs03:9092", "kafka_topic" = "gong_test", "kafka_partitions"="0", "kafka_offsets"="OFFSET_BEGINNING" );

发现不管如何测试,在mysql中的insert和update都可以同步到starrocks中,一度以为starrocks官网写得增量同步,只是同步新增或变更的数据,删除不了;
参考StarRoks论坛文档链接:https://docs.starrocks.com/zh-cn/main/loading/Json_loading
强调__op字段
问题二:__op字段配置的问题
1. columns(id,k1,v1,temp,__op=(CASE temp WHEN "DELETE" THEN 1 ELSE 0 END))2. "jsonpaths"="[\"$.data[0].id\",\"$.data[0].k1\",\"$.data[0].v1\",\"$.type\"]",

这两处配置是需要格外注意的地方,可以参考官网论坛链接:https://forum.starrocks.com/t/topic/851
字段配置错误,报错:
Reason: column count mismatch, expect=4 real=1. src line: [{"data":[{"id":"88888","k1":"88888","v1":"8888"}],"database":"gong","es":1648798201000,"id":30,"isDdl":false,"mysqlType":{"id":"int(11)","k1":"varchar(25)","v1":"int(11)"},"old":null,"pkNames":["id"],"sql":"","sqlType":{"id":4,"k1":12,"v1":4},"table":"gong_cdc","ts":1648798212928,"type":"INSERT"}];

3.由于数据质量等问题引起的null情况,需要配置参数"max_error_number"="100",可以配置为一个较大的值,否则routine load任务会paused

4.在建routine load任务时候,对应字段反引号``引起来了,会报错id取值为空,其他字段取到的值也都为空情况,定位了很久,应该是当前routine load作业的一个小bug,版本2.1.x:
StarRocks|使用StarRocks内置工具Routine Load同步Mysql/TiDB/PG等增量更新数据到StarRocks
文章图片

需要将反引号``符号去掉:
StarRocks|使用StarRocks内置工具Routine Load同步Mysql/TiDB/PG等增量更新数据到StarRocks
文章图片



    推荐阅读