1.HandTrackingMin.py
import cv2
import mediapipe as mp
import timecap = cv2.VideoCapture(0)mpHands = mp.solutions.hands
hands = mpHands.Hands()
mpDraw = mp.solutions.drawing_utilspTime = 0
cTime = 0while True:
success, img = cap.read()
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
results = hands.process(imgRGB)if results.multi_hand_landmarks:
for handLms in results.multi_hand_landmarks:
for id, lm in enumerate(handLms.landmark):
h, w, c = img.shape
cx, cy = int(lm.x * w), int(lm.y * h)
print(id, cx, cy)
cv2.circle(img, (cx,cx), 15, (255, 0, 255), cv2.FILLED)mpDraw.draw_landmarks(img, handLms, mpHands.HAND_CONNECTIONS)cTime = time.time()
fps = 1 / (cTime - pTime)
pTime = cTimecv2.putText(img, str(int(fps)), (10,70), cv2.FONT_HERSHEY_PLAIN, 3,(255, 0, 255), 3)cv2.imshow("Image", img)
cv2.waitKey(1)
2.HandTrackingModule.py
import cv2
import mediapipe as mp
import timeclass handDetector():
def __init__(self, mode=False,maxHands=2,detectionCon=0.5,trackCon=0.5):
self.mode = mode
self.maxHands = maxHands
self.detectionCon = detectionCon
self.trackCon = trackConself.mpHands = mp.solutions.hands
self.hands = self.mpHands.Hands(self.mode, self.maxHands, self.detectionCon, self.trackCon)self.mpDraw = mp.solutions.drawing_utilsdef findHands(self, img, draw=True):
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.hands.process(imgRGB)if self.results.multi_hand_landmarks:
for handLms in self.results.multi_hand_landmarks:
if draw:
self.mpDraw.draw_landmarks(img, handLms, self.mpHands.HAND_CONNECTIONS)
return imgdef findPosition(self, img, handNo=0, draw=True):lmList = []
if self.results.multi_hand_landmarks:
myHand = self.results.multi_hand_landmarks[handNo]
for id, lm in enumerate(myHand.landmark):
h, w, c = img.shape
cx, cy = int(lm.x * w), int(lm.y * h)
lmList.append([id, cx, cy])
if draw:
cv2.circle(img, (cx, cy), 15, (255, 0, 255), cv2.FILLED)return lmListdef main():
pTime = 0
cTime = 0
cap = cv2.VideoCapture(0)
detector = handDetector()
while True:
success, img = cap.read()
img = detector.findHands(img)
lmList = detector.findPosition(img)
if len(lmList) != 0:
print(lmList[4])cTime = time.time()
fps = 1 / (cTime - pTime)
pTime = cTimecv2.putText(img, str(int(fps)), (10,70), cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 255), 3)cv2.imshow("Image", img)
cv2.waitKey(1)if __name__ == "__main__":
main()
3.VolumeHandControl_demo01.py
import cv2
import time
import numpy as np
import HandTrackingModule as htm############################################
wCam, hCam = 1, 720
############################################
cap = cv2.VideoCapture(0)
cap.set(3, wCam)
cap.set(4, hCam)
pTime = 0detector = htm.handDetector()while True:
success, img = cap.read()
img = detector.findHands(img)cTime = time.time()
fps = 1/(cTime-pTime)
pTime = cTimecv2.putText(img, f'FPS:{int(fps)})', (40,50), cv2.FONT_HERSHEY_COMPLEX, 1, (255,0,0),3)frame = cv2.flip(img,1)
cv2.imshow("Img", img)
c = cv2.waitKey(50)
if c == 27:
break
4.VolumeHandControl_demo02.py
import cv2
import time
import numpy as np
import HandTrackingModule as htm
import math
from ctypes import cast, POINTER
from comtypes import CLSCTX_ALL
from pycaw.pycaw import AudioUtilities, IAudioEndpointVolume############################################
wCam, hCam = 720, 480
############################################
cap = cv2.VideoCapture(0)
cap.set(3, wCam)
cap.set(4, hCam)
pTime = 0detector = htm.handDetector(detectionCon=0.7)devices = AudioUtilities.GetSpeakers()
interface = devices.Activate(
IAudioEndpointVolume._iid_, CLSCTX_ALL, None)
volume = cast(interface, POINTER(IAudioEndpointVolume))
# volume.GetMute()
# volume.GetMasterVolumeLevel()
volRange = volume.GetVolumeRange()
# volume.SetMasterVolumeLevel(0, None)
minVol = volRange[0]
maxVol = volRange[1]
vol = 0
volBar = 400
volPer = 0while True:
success, img = cap.read()
img = detector.findHands(img)
lmList = detector.findPosition(img, draw=False)
if len(lmList) != 0:
# print(lmList[4], lmList[8])x1, y1 = lmList[4][1], lmList[4][2]
x2, y2 = lmList[8][1], lmList[8][2]
cx, cy = (x1 + x2)//2 , (y1 + y2)//2cv2.circle(img, (x1,y1), 15, (255, 0, 255), cv2.FILLED)
cv2.circle(img, (x2,y2), 15, (255, 0, 255), cv2.FILLED)
cv2.line(img, (x1,y1), (x2,y2), (255, 0, 255), 3)
cv2.circle(img, (cx, cy), 15, (255, 0, 255), cv2.FILLED)length = math.hypot(x2 - x1, y2 - y1)
# print(length)# Hand range 50 - 300
# Volume Range -65 -0
vol = np.interp(length,[50,300],[minVol,maxVol])
volBar = np.interp(length,[50,300],[400,150])
volPer = np.interp(length,[50,300],[0,100])
print(int(length), vol)
volume.SetMasterVolumeLevel(vol, None)if length <= 50:
cv2.circle(img, (cx, cy), 15, (0, 255, 0), cv2.FILLED)cv2.rectangle(img, (50, 150), (85, 400), (0, 255, 0), 3)
cv2.rectangle(img, (50, int(volBar)), (85, 400), (0, 255, 0), cv2.FILLED)
cv2.putText(img, f'{int(volPer)} %', (40, 450), cv2.FONT_HERSHEY_COMPLEX, 1, (250, 0, 0), 3)cTime = time.time()
fps = 1/(cTime-pTime)
pTime = cTime
cv2.putText(img, f'FPS:{int(fps)})', (40,50), cv2.FONT_HERSHEY_COMPLEX, 1, (255,0,0),3)frame = cv2.flip(img,1)
cv2.imshow("Img", img)
c = cv2.waitKey(50)
if c == 27:
break
推荐阅读
- python|Python绘制简单的曲线图·
- 树莓派|树莓派4B的串口使用,并通过串口与其他设备经过通讯协议发送、接收数据。
- web端|web全栈开发(web前后端数据交互。html5+jquery作为前端、Python+flask作为后端)
- 树莓派|(七)树莓派系列教程(树莓派4B连接LCD1602液晶显示屏并且显示内容)
- 算法|永远退出机器学习界!从业八年,Reddit网友放弃高薪转投数学(风气太浮夸)
- 大数据|【康奈尔大学】机器学习领域读博这段旅程的一些感悟
- 技术学习笔记|机器学习入门笔记(二)行业分析
- 人工智能|「博士毕业一年,我拿下 ACL Best Paper」
- 大数据|机器学习领域读博这段旅程的一些感悟