6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!

6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

Hello,大家好,我是小马,最近创建了一个深度学习代码库,欢迎大家来玩呀!代码库地址是https://github.com/xmu-xiaoma...,目前实现了将近40个深度学习的常见算法!
For 小白(Like Me):
最近在读论文的时候会发现一个问题,有时候论文核心思想非常简单,核心代码可能也就十几行。但是打开作者release的源码时,却发现提出的模块嵌入到分类、检测、分割等任务框架中,导致代码比较冗余,对于特定任务框架不熟悉的我,很难找到核心代码,导致在论文和网络思想的理解上会有一定困难。
For 进阶者(Like You):
如果把Conv、FC、RNN这些基本单元看做小的Lego积木,把Transformer、ResNet这些结构看成已经搭好的Lego城堡。那么本项目提供的模块就是一个个具有完整语义信息的Lego组件。让科研工作者们避免反复造轮子,只需思考如何利用这些“Lego组件”,搭建出更多绚烂多彩的作品。
For 大神(May Be Like You):
能力有限,不喜轻喷!!!
For All:
本项目就是要实现一个既能让深度学习小白也能搞懂,又能服务科研和工业社区的代码库。本项目的宗旨是从代码角度,实现让世界上没有难读的论文。
(同时也非常欢迎各位科研工作者将自己的工作的核心代码整理到本项目中,推动科研社区的发展,会在readme中注明代码的作者~)
Contents

  • Attention Series
    • 1. External Attention Usage
    • 2. Self Attention Usage
    • 3. Simplified Self Attention Usage
    • 4. Squeeze-and-Excitation Attention Usage
    • 5. SK Attention Usage
    • 6. CBAM Attention Usage
    • 7. BAM Attention Usage
    • 8. ECA Attention Usage
    • 9. DANet Attention Usage
    • 10. Pyramid Split Attention (PSA) Usage
    • 11. Efficient Multi-Head Self-Attention(EMSA) Usage
    • 12. Shuffle Attention Usage
    • 13. MUSE Attention Usage
    • 14. SGE Attention Usage
    • 15. A2 Attention Usage
    • 16. AFT Attention Usage
    • 17. Outlook Attention Usage
    • 18. ViP Attention Usage
    • 19. CoAtNet Attention Usage
    • 20. HaloNet Attention Usage
    • 21. Polarized Self-Attention Usage
    • 22. CoTAttention Usage
    • 23. Residual Attention Usage
    • 24. S2 Attention Usage
    • 25. GFNet Attention Usage
    • 26. Triplet Attention Usage
    • 27. Coordinate Attention Usage
    • 28. MobileViT Attention Usage
    • 29. ParNet Attention Usage
    • 30. UFO Attention Usage
    • 31. MobileViTv2 Attention Usage
  • Backbone Series
    • 1. ResNet Usage
    • 2. ResNeXt Usage
    • 3. MobileViT Usage
    • 4. ConvMixer Usage
  • MLP Series
    • 1. RepMLP Usage
    • 2. MLP-Mixer Usage
    • 3. ResMLP Usage
    • 4. gMLP Usage
    • 5. sMLP Usage
  • Re-Parameter(ReP) Series
    • 1. RepVGG Usage
    • 2. ACNet Usage
    • 3. Diverse Branch Block(DDB) Usage
  • Convolution Series
    • 1. Depthwise Separable Convolution Usage
    • 2. MBConv Usage
    • 3. Involution Usage
    • 4. DynamicConv Usage
    • 5. CondConv Usage
Attention Series
  • Pytorch implementation of "Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks---arXiv 2021.05.05"
  • Pytorch implementation of "Attention Is All You Need---NIPS2017"
  • Pytorch implementation of "Squeeze-and-Excitation Networks---CVPR2018"
  • Pytorch implementation of "Selective Kernel Networks---CVPR2019"
  • Pytorch implementation of "CBAM: Convolutional Block Attention Module---ECCV2018"
  • Pytorch implementation of "BAM: Bottleneck Attention Module---BMCV2018"
  • Pytorch implementation of "ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks---CVPR2020"
  • Pytorch implementation of "Dual Attention Network for Scene Segmentation---CVPR2019"
  • Pytorch implementation of "EPSANet: An Efficient Pyramid Split Attention Block on Convolutional Neural Network---arXiv 2021.05.30"
  • Pytorch implementation of "ResT: An Efficient Transformer for Visual Recognition---arXiv 2021.05.28"
  • Pytorch implementation of "SA-NET: SHUFFLE ATTENTION FOR DEEP CONVOLUTIONAL NEURAL NETWORKS---ICASSP 2021"
  • Pytorch implementation of "MUSE: Parallel Multi-Scale Attention for Sequence to Sequence Learning---arXiv 2019.11.17"
  • Pytorch implementation of "Spatial Group-wise Enhance: Improving Semantic Feature Learning in Convolutional Networks---arXiv 2019.05.23"
  • Pytorch implementation of "A2-Nets: Double Attention Networks---NIPS2018"
  • Pytorch implementation of "An Attention Free Transformer---ICLR2021 (Apple New Work)"
  • Pytorch implementation of VOLO: Vision Outlooker for Visual Recognition---arXiv 2021.06.24"
    【论文解析】
  • Pytorch implementation of Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition---arXiv 2021.06.23
    【论文解析】
  • Pytorch implementation of CoAtNet: Marrying Convolution and Attention for All Data Sizes---arXiv 2021.06.09
    【论文解析】
  • Pytorch implementation of Scaling Local Self-Attention for Parameter Efficient Visual Backbones---CVPR2021 Oral 【论文解析】
  • Pytorch implementation of Polarized Self-Attention: Towards High-quality Pixel-wise Regression---arXiv 2021.07.02 【论文解析】
  • Pytorch implementation of Contextual Transformer Networks for Visual Recognition---arXiv 2021.07.26 【论文解析】
  • Pytorch implementation of Residual Attention: A Simple but Effective Method for Multi-Label Recognition---ICCV2021
  • Pytorch implementation of S2-MLPv2: Improved Spatial-Shift MLP Architecture for Vision---arXiv 2021.08.02 【论文解析】
  • Pytorch implementation of Global Filter Networks for Image Classification---arXiv 2021.07.01
  • Pytorch implementation of Rotate to Attend: Convolutional Triplet Attention Module---WACV 2021
  • Pytorch implementation of Coordinate Attention for Efficient Mobile Network Design ---CVPR 2021
  • Pytorch implementation of MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer---ArXiv 2021.10.05
  • Pytorch implementation of Non-deep Networks---ArXiv 2021.10.20
  • Pytorch implementation of UFO-ViT: High Performance Linear Vision Transformer without Softmax---ArXiv 2021.09.29
  • Pytorch implementation of Separable Self-attention for Mobile Vision Transformers---ArXiv 2022.06.06
1. External Attention Usage 1.1. Paper "Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks"
1.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

1.3. Usage Code
from model.attention.ExternalAttention import ExternalAttention import torchinput=torch.randn(50,49,512) ea = ExternalAttention(d_model=512,S=8) output=ea(input) print(output.shape)

2. Self Attention Usage 2.1. Paper "Attention Is All You Need"
1.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

1.3. Usage Code
from model.attention.SelfAttention import ScaledDotProductAttention import torchinput=torch.randn(50,49,512) sa = ScaledDotProductAttention(d_model=512, d_k=512, d_v=512, h=8) output=sa(input,input,input) print(output.shape)

3. Simplified Self Attention Usage 3.1. Paper [None]()
3.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

3.3. Usage Code
from model.attention.SimplifiedSelfAttention import SimplifiedScaledDotProductAttention import torchinput=torch.randn(50,49,512) ssa = SimplifiedScaledDotProductAttention(d_model=512, h=8) output=ssa(input,input,input) print(output.shape)

4. Squeeze-and-Excitation Attention Usage 4.1. Paper "Squeeze-and-Excitation Networks"
4.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

4.3. Usage Code
from model.attention.SEAttention import SEAttention import torchinput=torch.randn(50,512,7,7) se = SEAttention(channel=512,reduction=8) output=se(input) print(output.shape)

5. SK Attention Usage 5.1. Paper "Selective Kernel Networks"
5.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

5.3. Usage Code
from model.attention.SKAttention import SKAttention import torchinput=torch.randn(50,512,7,7) se = SKAttention(channel=512,reduction=8) output=se(input) print(output.shape)

6. CBAM Attention Usage 6.1. Paper "CBAM: Convolutional Block Attention Module"
6.2. Overview 【6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!】6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

6.3. Usage Code
from model.attention.CBAM import CBAMBlock import torchinput=torch.randn(50,512,7,7) kernel_size=input.shape[2] cbam = CBAMBlock(channel=512,reduction=16,kernel_size=kernel_size) output=cbam(input) print(output.shape)

7. BAM Attention Usage 7.1. Paper "BAM: Bottleneck Attention Module"
7.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

7.3. Usage Code
from model.attention.BAM import BAMBlock import torchinput=torch.randn(50,512,7,7) bam = BAMBlock(channel=512,reduction=16,dia_val=2) output=bam(input) print(output.shape)

8. ECA Attention Usage 8.1. Paper "ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks"
8.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

8.3. Usage Code
from model.attention.ECAAttention import ECAAttention import torchinput=torch.randn(50,512,7,7) eca = ECAAttention(kernel_size=3) output=eca(input) print(output.shape)

9. DANet Attention Usage 9.1. Paper "Dual Attention Network for Scene Segmentation"
9.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

9.3. Usage Code
from model.attention.DANet import DAModule import torchinput=torch.randn(50,512,7,7) danet=DAModule(d_model=512,kernel_size=3,H=7,W=7) print(danet(input).shape)

10. Pyramid Split Attention Usage 10.1. Paper "EPSANet: An Efficient Pyramid Split Attention Block on Convolutional Neural Network"
10.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

10.3. Usage Code
from model.attention.PSA import PSA import torchinput=torch.randn(50,512,7,7) psa = PSA(channel=512,reduction=8) output=psa(input) print(output.shape)

11. Efficient Multi-Head Self-Attention Usage 11.1. Paper "ResT: An Efficient Transformer for Visual Recognition"
11.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

11.3. Usage Code
from model.attention.EMSA import EMSA import torch from torch import nn from torch.nn import functional as Finput=torch.randn(50,64,512) emsa = EMSA(d_model=512, d_k=512, d_v=512, h=8,H=8,W=8,ratio=2,apply_transform=True) output=emsa(input,input,input) print(output.shape)

12. Shuffle Attention Usage 12.1. Paper "SA-NET: SHUFFLE ATTENTION FOR DEEP CONVOLUTIONAL NEURAL NETWORKS"
12.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

12.3. Usage Code
from model.attention.ShuffleAttention import ShuffleAttention import torch from torch import nn from torch.nn import functional as Finput=torch.randn(50,512,7,7) se = ShuffleAttention(channel=512,G=8) output=se(input) print(output.shape)

13. MUSE Attention Usage 13.1. Paper "MUSE: Parallel Multi-Scale Attention for Sequence to Sequence Learning"
13.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

13.3. Usage Code
from model.attention.MUSEAttention import MUSEAttention import torch from torch import nn from torch.nn import functional as Finput=torch.randn(50,49,512) sa = MUSEAttention(d_model=512, d_k=512, d_v=512, h=8) output=sa(input,input,input) print(output.shape)

14. SGE Attention Usage 14.1. Paper Spatial Group-wise Enhance: Improving Semantic Feature Learning in Convolutional Networks
14.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

14.3. Usage Code
from model.attention.SGE import SpatialGroupEnhance import torch from torch import nn from torch.nn import functional as Finput=torch.randn(50,512,7,7) sge = SpatialGroupEnhance(groups=8) output=sge(input) print(output.shape)

15. A2 Attention Usage 15.1. Paper A2-Nets: Double Attention Networks
15.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

15.3. Usage Code
from model.attention.A2Atttention import DoubleAttention import torch from torch import nn from torch.nn import functional as Finput=torch.randn(50,512,7,7) a2 = DoubleAttention(512,128,128,True) output=a2(input) print(output.shape)

16. AFT Attention Usage 16.1. Paper An Attention Free Transformer
16.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

16.3. Usage Code
from model.attention.AFT import AFT_FULL import torch from torch import nn from torch.nn import functional as Finput=torch.randn(50,49,512) aft_full = AFT_FULL(d_model=512, n=49) output=aft_full(input) print(output.shape)

17. Outlook Attention Usage 17.1. Paper VOLO: Vision Outlooker for Visual Recognition"
17.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

17.3. Usage Code
from model.attention.OutlookAttention import OutlookAttention import torch from torch import nn from torch.nn import functional as Finput=torch.randn(50,28,28,512) outlook = OutlookAttention(dim=512) output=outlook(input) print(output.shape)

18. ViP Attention Usage 18.1. Paper Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition"
18.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

18.3. Usage Code
from model.attention.ViP import WeightedPermuteMLP import torch from torch import nn from torch.nn import functional as Finput=torch.randn(64,8,8,512) seg_dim=8 vip=WeightedPermuteMLP(512,seg_dim) out=vip(input) print(out.shape)

19. CoAtNet Attention Usage 19.1. Paper CoAtNet: Marrying Convolution and Attention for All Data Sizes"
19.2. Overview None
19.3. Usage Code
from model.attention.CoAtNet import CoAtNet import torch from torch import nn from torch.nn import functional as Finput=torch.randn(1,3,224,224) mbconv=CoAtNet(in_ch=3,image_size=224) out=mbconv(input) print(out.shape)

20. HaloNet Attention Usage 20.1. Paper Scaling Local Self-Attention for Parameter Efficient Visual Backbones"
20.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

20.3. Usage Code
from model.attention.HaloAttention import HaloAttention import torch from torch import nn from torch.nn import functional as Finput=torch.randn(1,512,8,8) halo = HaloAttention(dim=512, block_size=2, halo_size=1,) output=halo(input) print(output.shape)

21. Polarized Self-Attention Usage 21.1. Paper Polarized Self-Attention: Towards High-quality Pixel-wise Regression"
21.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

21.3. Usage Code
from model.attention.PolarizedSelfAttention import ParallelPolarizedSelfAttention,SequentialPolarizedSelfAttention import torch from torch import nn from torch.nn import functional as Finput=torch.randn(1,512,7,7) psa = SequentialPolarizedSelfAttention(channel=512) output=psa(input) print(output.shape)

22. CoTAttention Usage 22.1. Paper Contextual Transformer Networks for Visual Recognition---arXiv 2021.07.26
22.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

22.3. Usage Code
from model.attention.CoTAttention import CoTAttention import torch from torch import nn from torch.nn import functional as Finput=torch.randn(50,512,7,7) cot = CoTAttention(dim=512,kernel_size=3) output=cot(input) print(output.shape)

23. Residual Attention Usage 23.1. Paper Residual Attention: A Simple but Effective Method for Multi-Label Recognition---ICCV2021
23.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

23.3. Usage Code
from model.attention.ResidualAttention import ResidualAttention import torch from torch import nn from torch.nn import functional as Finput=torch.randn(50,512,7,7) resatt = ResidualAttention(channel=512,num_class=1000,la=0.2) output=resatt(input) print(output.shape)

24. S2 Attention Usage 24.1. Paper S2-MLPv2: Improved Spatial-Shift MLP Architecture for Vision---arXiv 2021.08.02
24.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

24.3. Usage Code
from model.attention.S2Attention import S2Attention import torch from torch import nn from torch.nn import functional as Finput=torch.randn(50,512,7,7) s2att = S2Attention(channels=512) output=s2att(input) print(output.shape)

25. GFNet Attention Usage 25.1. Paper Global Filter Networks for Image Classification---arXiv 2021.07.01
25.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

25.3. Usage Code - Implemented by Wenliang Zhao (Author)
from model.attention.gfnet import GFNet import torch from torch import nn from torch.nn import functional as Fx = torch.randn(1, 3, 224, 224) gfnet = GFNet(embed_dim=384, img_size=224, patch_size=16, num_classes=1000) out = gfnet(x) print(out.shape)

26. TripletAttention Usage 26.1. Paper Rotate to Attend: Convolutional Triplet Attention Module---CVPR 2021
26.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

26.3. Usage Code - Implemented by digantamisra98
from model.attention.TripletAttention import TripletAttention import torch from torch import nn from torch.nn import functional as F input=torch.randn(50,512,7,7) triplet = TripletAttention() output=triplet(input) print(output.shape)

27. Coordinate Attention Usage 27.1. Paper Coordinate Attention for Efficient Mobile Network Design---CVPR 2021
27.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

27.3. Usage Code - Implemented by Andrew-Qibin
from model.attention.CoordAttention import CoordAtt import torch from torch import nn from torch.nn import functional as Finp=torch.rand([2, 96, 56, 56]) inp_dim, oup_dim = 96, 96 reduction=32coord_attention = CoordAtt(inp_dim, oup_dim, reduction=reduction) output=coord_attention(inp) print(output.shape)

28. MobileViT Attention Usage 28.1. Paper MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer---ArXiv 2021.10.05
28.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

28.3. Usage Code
from model.attention.MobileViTAttention import MobileViTAttention import torch from torch import nn from torch.nn import functional as Fif __name__ == '__main__': m=MobileViTAttention() input=torch.randn(1,3,49,49) output=m(input) print(output.shape)#output:(1,3,49,49)

29. ParNet Attention Usage 29.1. Paper Non-deep Networks---ArXiv 2021.10.20
29.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

29.3. Usage Code
from model.attention.ParNetAttention import * import torch from torch import nn from torch.nn import functional as Fif __name__ == '__main__': input=torch.randn(50,512,7,7) pna = ParNetAttention(channel=512) output=pna(input) print(output.shape) #50,512,7,7

30. UFO Attention Usage 30.1. Paper UFO-ViT: High Performance Linear Vision Transformer without Softmax---ArXiv 2021.09.29
30.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

30.3. Usage Code
from model.attention.UFOAttention import * import torch from torch import nn from torch.nn import functional as Fif __name__ == '__main__': input=torch.randn(50,49,512) ufo = UFOAttention(d_model=512, d_k=512, d_v=512, h=8) output=ufo(input,input,input) print(output.shape) #[50, 49, 512]

-
31. MobileViTv2 Attention Usage 31.1. Paper Separable Self-attention for Mobile Vision Transformers---ArXiv 2022.06.06
31.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

31.3. Usage Code
from model.attention.UFOAttention import * import torch from torch import nn from torch.nn import functional as Fif __name__ == '__main__': input=torch.randn(50,49,512) ufo = UFOAttention(d_model=512, d_k=512, d_v=512, h=8) output=ufo(input,input,input) print(output.shape) #[50, 49, 512]

Backbone Series
  • Pytorch implementation of "Deep Residual Learning for Image Recognition---CVPR2016 Best Paper"
  • Pytorch implementation of "Aggregated Residual Transformations for Deep Neural Networks---CVPR2017"
  • Pytorch implementation of MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer---ArXiv 2020.10.05
  • Pytorch implementation of Patches Are All You Need?---ICLR2022 (Under Review)
1. ResNet Usage 1.1. Paper "Deep Residual Learning for Image Recognition---CVPR2016 Best Paper"
1.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

1.3. Usage Code
from model.backbone.resnet import ResNet50,ResNet101,ResNet152 import torch if __name__ == '__main__': input=torch.randn(50,3,224,224) resnet50=ResNet50(1000) # resnet101=ResNet101(1000) # resnet152=ResNet152(1000) out=resnet50(input) print(out.shape)

2. ResNeXt Usage 2.1. Paper "Aggregated Residual Transformations for Deep Neural Networks---CVPR2017"
2.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

2.3. Usage Code
from model.backbone.resnext import ResNeXt50,ResNeXt101,ResNeXt152 import torchif __name__ == '__main__': input=torch.randn(50,3,224,224) resnext50=ResNeXt50(1000) # resnext101=ResNeXt101(1000) # resnext152=ResNeXt152(1000) out=resnext50(input) print(out.shape)

3. MobileViT Usage 3.1. Paper MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer---ArXiv 2020.10.05
3.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

3.3. Usage Code
from model.backbone.MobileViT import * import torch from torch import nn from torch.nn import functional as Fif __name__ == '__main__': input=torch.randn(1,3,224,224)### mobilevit_xxs mvit_xxs=mobilevit_xxs() out=mvit_xxs(input) print(out.shape)### mobilevit_xs mvit_xs=mobilevit_xs() out=mvit_xs(input) print(out.shape)### mobilevit_s mvit_s=mobilevit_s() out=mvit_s(input) print(out.shape)

4. ConvMixer Usage 4.1. Paper Patches Are All You Need?---ICLR2022 (Under Review)
4.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

4.3. Usage Code
from model.backbone.ConvMixer import * import torch from torch import nn from torch.nn import functional as Fif __name__ == '__main__': x=torch.randn(1,3,224,224) convmixer=ConvMixer(dim=512,depth=12) out=convmixer(x) print(out.shape)#[1, 1000]

MLP Series
  • Pytorch implementation of "RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition---arXiv 2021.05.05"
  • Pytorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision---arXiv 2021.05.17"
  • Pytorch implementation of "ResMLP: Feedforward networks for image classification with data-efficient training---arXiv 2021.05.07"
  • Pytorch implementation of "Pay Attention to MLPs---arXiv 2021.05.17"
  • Pytorch implementation of "Sparse MLP for Image Recognition: Is Self-Attention Really Necessary?---arXiv 2021.09.12"
1. RepMLP Usage 1.1. Paper "RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition"
1.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

1.3. Usage Code
from model.mlp.repmlp import RepMLP import torch from torch import nnN=4 #batch size C=512 #input dim O=1024 #output dim H=14 #image height W=14 #image width h=7 #patch height w=7 #patch width fc1_fc2_reduction=1 #reduction ratio fc3_groups=8 # groups repconv_kernels=[1,3,5,7] #kernel list repmlp=RepMLP(C,O,H,W,h,w,fc1_fc2_reduction,fc3_groups,repconv_kernels=repconv_kernels) x=torch.randn(N,C,H,W) repmlp.eval() for module in repmlp.modules(): if isinstance(module, nn.BatchNorm2d) or isinstance(module, nn.BatchNorm1d): nn.init.uniform_(module.running_mean, 0, 0.1) nn.init.uniform_(module.running_var, 0, 0.1) nn.init.uniform_(module.weight, 0, 0.1) nn.init.uniform_(module.bias, 0, 0.1)#training result out=repmlp(x) #inference result repmlp.switch_to_deploy() deployout = repmlp(x)print(((deployout-out)**2).sum())

2. MLP-Mixer Usage 2.1. Paper "MLP-Mixer: An all-MLP Architecture for Vision"
2.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

2.3. Usage Code
from model.mlp.mlp_mixer import MlpMixer import torch mlp_mixer=MlpMixer(num_classes=1000,num_blocks=10,patch_size=10,tokens_hidden_dim=32,channels_hidden_dim=1024,tokens_mlp_dim=16,channels_mlp_dim=1024) input=torch.randn(50,3,40,40) output=mlp_mixer(input) print(output.shape)

3. ResMLP Usage 3.1. Paper "ResMLP: Feedforward networks for image classification with data-efficient training"
3.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

3.3. Usage Code
from model.mlp.resmlp import ResMLP import torchinput=torch.randn(50,3,14,14) resmlp=ResMLP(dim=128,image_size=14,patch_size=7,class_num=1000) out=resmlp(input) print(out.shape) #the last dimention is class_num

4. gMLP Usage 4.1. Paper "Pay Attention to MLPs"
4.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

4.3. Usage Code
from model.mlp.g_mlp import gMLP import torchnum_tokens=10000 bs=50 len_sen=49 num_layers=6 input=torch.randint(num_tokens,(bs,len_sen)) #bs,len_sen gmlp = gMLP(num_tokens=num_tokens,len_sen=len_sen,dim=512,d_ff=1024) output=gmlp(input) print(output.shape)

5. sMLP Usage 5.1. Paper "Sparse MLP for Image Recognition: Is Self-Attention Really Necessary?"
5.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

5.3. Usage Code
from model.mlp.sMLP_block import sMLPBlock import torch from torch import nn from torch.nn import functional as Fif __name__ == '__main__': input=torch.randn(50,3,224,224) smlp=sMLPBlock(h=224,w=224) out=smlp(input) print(out.shape)

Re-Parameter Series
  • Pytorch implementation of "RepVGG: Making VGG-style ConvNets Great Again---CVPR2021"
  • Pytorch implementation of "ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks---ICCV2019"
  • Pytorch implementation of "Diverse Branch Block: Building a Convolution as an Inception-like Unit---CVPR2021"
1. RepVGG Usage 1.1. Paper "RepVGG: Making VGG-style ConvNets Great Again"
1.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

1.3. Usage Code
from model.rep.repvgg import RepBlock import torchinput=torch.randn(50,512,49,49) repblock=RepBlock(512,512) repblock.eval() out=repblock(input) repblock._switch_to_deploy() out2=repblock(input) print('difference between vgg and repvgg') print(((out2-out)**2).sum())

2. ACNet Usage 2.1. Paper "ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks"
2.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

2.3. Usage Code
from model.rep.acnet import ACNet import torch from torch import nninput=torch.randn(50,512,49,49) acnet=ACNet(512,512) acnet.eval() out=acnet(input) acnet._switch_to_deploy() out2=acnet(input) print('difference:') print(((out2-out)**2).sum())

2. Diverse Branch Block Usage 2.1. Paper "Diverse Branch Block: Building a Convolution as an Inception-like Unit"
2.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

2.3. Usage Code 2.3.1 Transform I
from model.rep.ddb import transI_conv_bn import torch from torch import nn from torch.nn import functional as Finput=torch.randn(1,64,7,7) #conv+bn conv1=nn.Conv2d(64,64,3,padding=1) bn1=nn.BatchNorm2d(64) bn1.eval() out1=bn1(conv1(input))#conv_fuse conv_fuse=nn.Conv2d(64,64,3,padding=1) conv_fuse.weight.data,conv_fuse.bias.data=https://www.it610.com/article/transI_conv_bn(conv1,bn1) out2=conv_fuse(input)print("difference:",((out2-out1)**2).sum().item())

2.3.2 Transform II
from model.rep.ddb import transII_conv_branch import torch from torch import nn from torch.nn import functional as Finput=torch.randn(1,64,7,7)#conv+conv conv1=nn.Conv2d(64,64,3,padding=1) conv2=nn.Conv2d(64,64,3,padding=1) out1=conv1(input)+conv2(input)#conv_fuse conv_fuse=nn.Conv2d(64,64,3,padding=1) conv_fuse.weight.data,conv_fuse.bias.data=https://www.it610.com/article/transII_conv_branch(conv1,conv2) out2=conv_fuse(input)print("difference:",((out2-out1)**2).sum().item())

2.3.3 Transform III
from model.rep.ddb import transIII_conv_sequential import torch from torch import nn from torch.nn import functional as Finput=torch.randn(1,64,7,7)#conv+conv conv1=nn.Conv2d(64,64,1,padding=0,bias=False) conv2=nn.Conv2d(64,64,3,padding=1,bias=False) out1=conv2(conv1(input))#conv_fuse conv_fuse=nn.Conv2d(64,64,3,padding=1,bias=False) conv_fuse.weight.data=https://www.it610.com/article/transIII_conv_sequential(conv1,conv2) out2=conv_fuse(input)print("difference:",((out2-out1)**2).sum().item())

2.3.4 Transform IV
from model.rep.ddb import transIV_conv_concat import torch from torch import nn from torch.nn import functional as Finput=torch.randn(1,64,7,7)#conv+conv conv1=nn.Conv2d(64,32,3,padding=1) conv2=nn.Conv2d(64,32,3,padding=1) out1=torch.cat([conv1(input),conv2(input)],dim=1)#conv_fuse conv_fuse=nn.Conv2d(64,64,3,padding=1) conv_fuse.weight.data,conv_fuse.bias.data=https://www.it610.com/article/transIV_conv_concat(conv1,conv2) out2=conv_fuse(input)print("difference:",((out2-out1)**2).sum().item())

2.3.5 Transform V
from model.rep.ddb import transV_avg import torch from torch import nn from torch.nn import functional as Finput=torch.randn(1,64,7,7)avg=nn.AvgPool2d(kernel_size=3,stride=1) out1=avg(input)conv=transV_avg(64,3) out2=conv(input)print("difference:",((out2-out1)**2).sum().item())

2.3.6 Transform VI
from model.rep.ddb import transVI_conv_scale import torch from torch import nn from torch.nn import functional as Finput=torch.randn(1,64,7,7)#conv+conv conv1x1=nn.Conv2d(64,64,1) conv1x3=nn.Conv2d(64,64,(1,3),padding=(0,1)) conv3x1=nn.Conv2d(64,64,(3,1),padding=(1,0)) out1=conv1x1(input)+conv1x3(input)+conv3x1(input)#conv_fuse conv_fuse=nn.Conv2d(64,64,3,padding=1) conv_fuse.weight.data,conv_fuse.bias.data=https://www.it610.com/article/transVI_conv_scale(conv1x1,conv1x3,conv3x1) out2=conv_fuse(input)print("difference:",((out2-out1)**2).sum().item())

Convolution Series
  • Pytorch implementation of "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications---CVPR2017"
  • Pytorch implementation of "Efficientnet: Rethinking model scaling for convolutional neural networks---PMLR2019"
  • Pytorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition---CVPR2021"
  • Pytorch implementation of "Dynamic Convolution: Attention over Convolution Kernels---CVPR2020 Oral"
  • Pytorch implementation of "CondConv: Conditionally Parameterized Convolutions for Efficient Inference---NeurIPS2019"
1. Depthwise Separable Convolution Usage 1.1. Paper "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications"
1.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

1.3. Usage Code
from model.conv.DepthwiseSeparableConvolution import DepthwiseSeparableConvolution import torch from torch import nn from torch.nn import functional as Finput=torch.randn(1,3,224,224) dsconv=DepthwiseSeparableConvolution(3,64) out=dsconv(input) print(out.shape)

2. MBConv Usage 2.1. Paper "Efficientnet: Rethinking model scaling for convolutional neural networks"
2.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

2.3. Usage Code
from model.conv.MBConv import MBConvBlock import torch from torch import nn from torch.nn import functional as Finput=torch.randn(1,3,224,224) mbconv=MBConvBlock(ksize=3,input_filters=3,output_filters=512,image_size=224) out=mbconv(input) print(out.shape)

3. Involution Usage 3.1. Paper "Involution: Inverting the Inherence of Convolution for Visual Recognition"
3.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

3.3. Usage Code
from model.conv.Involution import Involution import torch from torch import nn from torch.nn import functional as Finput=torch.randn(1,4,64,64) involution=Involution(kernel_size=3,in_channel=4,stride=2) out=involution(input) print(out.shape)

4. DynamicConv Usage 4.1. Paper "Dynamic Convolution: Attention over Convolution Kernels"
4.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

4.3. Usage Code
from model.conv.DynamicConv import * import torch from torch import nn from torch.nn import functional as Fif __name__ == '__main__': input=torch.randn(2,32,64,64) m=DynamicConv(in_planes=32,out_planes=64,kernel_size=3,stride=1,padding=1,bias=False) out=m(input) print(out.shape) # 2,32,64,64

5. CondConv Usage 5.1. Paper "CondConv: Conditionally Parameterized Convolutions for Efficient Inference"
5.2. Overview 6k+ star,面向小白的深度学习代码库!一行代码实现所有Attention机制!
文章图片

5.3. Usage Code
from model.conv.CondConv import * import torch from torch import nn from torch.nn import functional as Fif __name__ == '__main__': input=torch.randn(2,32,64,64) m=CondConv(in_planes=32,out_planes=64,kernel_size=3,stride=1,padding=1,bias=False) out=m(input) print(out.shape)

已建立深度学习公众号——FightingCV,欢迎大家关注!!!
ICCV、CVPR、NeurIPS、ICML论文解析汇总:https://github.com/xmu-xiaoma...
面向小白的Attention、重参数、MLP、卷积核心代码学习:https://github.com/xmu-xiaoma...
加入交流群,请添加小助手wx:FightngCV666
本文由mdnice多平台发布

    推荐阅读