yolo系列|yolov5-5.0加入CBAM,SE,CA,ECA注意力机制

CBAM注意力

yolo.py和yaml文件中相应的CBAMC3也要换成CBAM,下面的SE同理

class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=16): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1)self.f1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu = nn.ReLU() self.f2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) # 写法二,亦可使用顺序容器 # self.sharedMLP = nn.Sequential( # nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False), nn.ReLU(), # nn.Conv2d(in_planes // rotio, in_planes, 1, bias=False))self.sigmoid = nn.Sigmoid()def forward(self, x): avg_out = self.f2(self.relu(self.f1(self.avg_pool(x)))) max_out = self.f2(self.relu(self.f1(self.max_pool(x)))) out = self.sigmoid(avg_out + max_out) return torch.mul(x, out)class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__()assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid()def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) out = torch.cat([avg_out, max_out], dim=1) out = self.sigmoid(self.conv(out)) return torch.mul(x, out)class CBAMC3(nn.Module): # CSP Bottleneck with 3 convolutions def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):# ch_in, ch_out, number, shortcut, groups, expansion super(CBAMC3, self).__init__() c_ = int(c2 * e)# hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv(2 * c_, c2, 1) self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) self.channel_attention = ChannelAttention(c2, 16) self.spatial_attention = SpatialAttention(7)# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])def forward(self, x): # 将最后的标准卷积模块改为了注意力机制提取特征 return self.spatial_attention( self.channel_attention(self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))))

1.这里是卷积注意力的代码,我一般喜欢加在common.py的C3模块后面,不需要做改动,傻瓜ctrl+c+v就可以了。
【yolo系列|yolov5-5.0加入CBAM,SE,CA,ECA注意力机制】2.在yolo.py里做改动。在parse_model函数里将对应代码用以下代码替换,还是傻瓜ctrl+c+v。
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR, CBAMC3]: c1, c2 = ch[f], args[0] if c2 != no:# if not output c2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]] if m in [BottleneckCSP, C3, C3TR, CBAMC3]: args.insert(2, n)# number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum([ch[x] for x in f]) elif m is Detect: args.append([ch[x] for x in f]) if isinstance(args[1], int):# number of anchors args[1] = [list(range(args[1] * 2))] * len(f) elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 else: c2 = ch[f]

3.在yaml文件里改动。比如你要用s网络,我是这样改的:将骨干网络中的C3模块全部替换为CBAMC3模块(这里需要注意的是,这样改动只能加载少部分预训练权重)。如果不想改动这么大,那么接着往下看。
pytorch中加入注意力机制(CBAM),以yolov5为例_YY_172的博客-CSDN博客_yolov5加注意力
这是首发将CBAM注意力添加到yolov5网络中的博主,我也是看了他的方法,侵删。

backbone: # [from, number, module, args] [[-1, 1, Focus, [64, 3]],# 0-P1/2 [-1, 1, Conv, [128, 3, 2]],# 1-P2/4 [-1, 3,CBAMC3, [128]], [-1, 1, Conv, [256, 3, 2]],# 3-P3/8 [-1, 9, CBAMC3, [256]], [-1, 1, Conv, [512, 3, 2]],# 5-P4/16 [-1, 9, CBAMC3, [512]], [-1, 1, Conv, [1024, 3, 2]],# 7-P5/32 [-1, 1, SPP, [1024, [5, 9, 13]]], [-1, 3, CBAMC3, [1024, False]],# 9 ]

SE注意力
class SE(nn.Module): def __init__(self, c1, c2, r=16): super(SE, self).__init__() self.avgpool = nn.AdaptiveAvgPool2d(1) self.l1 = nn.Linear(c1, c1 // r, bias=False) self.relu = nn.ReLU(inplace=True) self.l2 = nn.Linear(c1 // r, c1, bias=False) self.sig = nn.Sigmoid() def forward(self, x): print(x.size()) b, c, _, _ = x.size() y = self.avgpool(x).view(b, c) y = self.l1(y) y = self.relu(y) y = self.l2(y) y = self.sig(y) y = y.view(b, c, 1, 1) return x * y.expand_as(x)

1.这里是SE注意力的代码段,同上一个注意力的加法一样,我喜欢加在C3后面。
2.在yolo.py中做改动。
def parse_model(d, ch):# model_dict, input_channels(3) logger.info('\n%3s%18s%3s%10s%-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors# number of anchors no = na * (nc + 5)# number of outputs = anchors * (classes + 5) layers, save, c2 = [], [], ch[-1]# layers, savelist, ch out for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):# from, number, module, args m = eval(m) if isinstance(m, str) else m# eval strings for j, a in enumerate(args): try: args[j] = eval(a) if isinstance(a, str) else a# eval strings except: pass n = max(round(n * gd), 1) if n > 1 else n# depth gain if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR, CoordAtt, SELayer, eca_layer, CBAM]: c1, c2 = ch[f], args[0] if c2 != no:# if not output c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in [BottleneckCSP, C3, C3TR]: args.insert(2, n)# number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum([ch[x] for x in f]) elif m is Detect: args.append([ch[x] for x in f]) if isinstance(args[1], int):# number of anchors args[1] = [list(range(args[1] * 2))] * len(f) elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 else: c2 = ch[f]

3.在你要用的yaml文件中做改动。
backbone: # [from, number, module, args] [[-1, 1, Focus, [64, 3]],# 0-P1/2 [-1, 1, Conv, [128, 3, 2]],# 1-P2/4 [-1, 3,C3, [128]], [-1, 1, Conv, [256, 3, 2]],# 3-P3/8 [-1, 9, C3, [256]], [-1, 1, Conv, [512, 3, 2]],# 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]],# 7-P5/32 [-1, 1, SPP, [1024, [5, 9, 13]]], [-1, 3, C3, [1024, False]],# 9 [-1, 1, SELayer, [1024, 4]] ]


ECA注意力
# class eca_layer(nn.Module): #"""Constructs a ECA module. #Args: #channel: Number of channels of the input feature map #k_size: Adaptive selection of kernel size #""" #def __init__(self, channel, k_size=3): #super(eca_layer, self).__init__() #self.avg_pool = nn.AdaptiveAvgPool2d(1) #self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) #self.sigmoid = nn.Sigmoid() # #def forward(self, x): ## feature descriptor on the global spatial information #y = self.avg_pool(x) # ## Two different branches of ECA module #y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1) # ## Multi-scale information fusion #y = self.sigmoid(y) #x=x*y.expand_as(x) # #return x * y.expand_as(x)

1.这里是注意力代码片段,放到自己的脚本里把注释取消掉就可以了,添加的位置同上,这里就不说了。
2.改动yolo.py。看以下代码段。
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR]: c1, c2 = ch[f], args[0] if c2 != no:# if not output c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in [BottleneckCSP, C3,eca_layer]: args.insert(2, n)# number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum([ch[x] for x in f]) elif m is Detect: args.append([ch[x] for x in f]) if isinstance(args[1], int):# number of anchors args[1] = [list(range(args[1] * 2))] * len(f) elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 elif m is eca_layer: channel=args[0] channel=make_divisible(channel*gw,8)if channel != no else channel args=[channel] else: c2 = ch[f]

3.改动你要用的yaml文件。这里我要解释一下为什么交代了两种添加注意力的方法(第一种:将骨干里的C3全部替换掉;第二种:在骨干最后一层加注意力,做一个输出层)。第二种方法的模型目前还在跑,还没出结果,不过模型的结果也能猜个大概,有稳定的微小提升,detect效果不会提升太多;我在用第一种方法将ECA注意力全部替换掉骨干里的C3时,模型的p、r、map均出现了下降的情况,大概就是一个两个点,但是令人意外的是,他的检测效果很好,能够检测到未作改动前的模型很多检测不到的目标,当然也会比原模型出现更多的误检和漏检情况,手动改阈值后好了很多,因为数据集涉及到公司机密,所以这里就不放出来了,我做的是安全帽的检测,有兴趣的同学可以尝试一下这种添加注意力的方法。
如果只是求提高模型准确率,推荐第二种方法。
接下来就是发表在今年CVPR上的注意力了。
CoorAttention
# class h_sigmoid(nn.Module): #def __init__(self, inplace=True): #super(h_sigmoid, self).__init__() #self.relu = nn.ReLU6(inplace=inplace) # #def forward(self, x): #return self.relu(x + 3) / 6 # # # class h_swish(nn.Module): #def __init__(self, inplace=True): #super(h_swish, self).__init__() #self.sigmoid = h_sigmoid(inplace=inplace) # #def forward(self, x): #return x * self.sigmoid(x) # class CoordAtt(nn.Module): #def __init__(self, inp, oup, reduction=32): #super(CoordAtt, self).__init__() #self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) #self.pool_w = nn.AdaptiveAvgPool2d((1, None)) # #mip = max(8, inp // reduction) # #self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0) #self.bn1 = nn.BatchNorm2d(mip) #self.act = h_swish() # #self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0) #self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0) # #def forward(self, x): #identity = x # #n, c, h, w = x.size() #x_h = self.pool_h(x) #x_w = self.pool_w(x).permute(0, 1, 3, 2) # #y = torch.cat([x_h, x_w], dim=2) #y = self.conv1(y) #y = self.bn1(y) #y = self.act(y) # #x_h, x_w = torch.split(y, [h, w], dim=2) #x_w = x_w.permute(0, 1, 3, 2) # #a_h = self.conv_h(x_h).sigmoid() #a_w = self.conv_w(x_w).sigmoid() # #out = identity * a_w * a_h # #return out

这是代码段,加在common.py的C3模块后面
这里是改动yolo.py的部分,最后在yaml文件里的改动这里就不说了,前面提供了两种方法供大家使用,大家可以自行选择。
def parse_model(d, ch):# model_dict, input_channels(3) logger.info('\n%3s%18s%3s%10s%-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors# number of anchors no = na * (nc + 5)# number of outputs = anchors * (classes + 5) layers, save, c2 = [], [], ch[-1]# layers, savelist, ch out for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):# from, number, module, args m = eval(m) if isinstance(m, str) else m# eval strings for j, a in enumerate(args): try: args[j] = eval(a) if isinstance(a, str) else a# eval strings except: pass n = max(round(n * gd), 1) if n > 1 else n# depth gain if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR,CBAMC3,CoordAtt]:# c1, c2 = ch[f], args[0] if c2 != no:# if not output c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in [BottleneckCSP, C3, C3TR]: args.insert(2, n)# number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum([ch[x] for x in f]) elif m is Detect: args.append([ch[x] for x in f]) if isinstance(args[1], int):# number of anchors args[1] = [list(range(args[1] * 2))] * len(f) elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 # elif m is eca_layer: #channel=args[0] #channel=make_divisible(channel*gw,8)if channel != no else channel #args=[channel] elif m is CoordAtt: inp,oup,re = args[0],args[1],args[2] oup = make_divisible(oup * gw, 8) if oup != no else oup args = [inp,oup,re] else: c2 = ch[f]

后面的ECA和CA注意力添加方法是我对着前两位博主照葫芦画瓢,在我的本地运行多次,就俩字,好用,以后的注意力也可以按照这种方法去添加。

小白学习中,此笔记纯属学习笔记使用,若有侵权,请联系我删除

    推荐阅读