深度学习|RuntimeError: result type Float can‘t be cast to the desired output type __int64报错解决方法

小白刚开始学习YOLOv5,跟随老哥的步骤走了一遍目标检测--手把手教你搭建自己的YOLOv5目标检测平台
【深度学习|RuntimeError: result type Float can‘t be cast to the desired output type __int64报错解决方法】最后训练最后一步出现RuntimeError: result type Float can‘t be cast to the desired output type __int64报错
解决方法:找到5.0版报错的loss.py中最后那段for函数,将其整体替换为yolov5-master版中loss.py最后一段for函数即可正常运行

for i in range(self.nl): anchors, shape = self.anchors[i], p[i].shape gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]]# xyxy gain# Match targets to anchors t = targets * gain# shape(3,n,7) if nt: # Matches r = t[..., 4:6] / anchors[:, None]# wh ratio j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t']# compare # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']# iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) t = t[j]# filter# Offsets gxy = t[:, 2:4]# grid xy gxi = gain[[2, 3]] - gxy# inverse j, k = ((gxy % 1 < g) & (gxy > 1)).T l, m = ((gxi % 1 < g) & (gxi > 1)).T j = torch.stack((torch.ones_like(j), j, k, l, m)) t = t.repeat((5, 1, 1))[j] offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] else: t = targets[0] offsets = 0# Define bc, gxy, gwh, a = t.chunk(4, 1)# (image, class), grid xy, grid wh, anchors a, (b, c) = a.long().view(-1), bc.long().T# anchors, image, class gij = (gxy - offsets).long() gi, gj = gij.T# grid indices# Append indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1)))# image, anchor, grid tbox.append(torch.cat((gxy - gij, gwh), 1))# box anch.append(anchors[a])# anchors tcls.append(c)# class


    推荐阅读