笔记|PaddleDetection-YOLOv3模型结构解析(二)

2021SC@SDUSC
本文分析PaddleDetection-YOLOv3模型结构:
Head部分算法结构图:
笔记|PaddleDetection-YOLOv3模型结构解析(二)
文章图片

modeling/head/yolo_head.py源码解析:
在yaml的配置:/configs/_base_/models/yolov3_darknet53.yml

''' YOLOv3Head:#初始化 anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]]#anchor大小 anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]#anchor索引 loss: YOLOv3Loss#lossYOLOv3Loss:#初始化 ignore_thresh: 0.7#正例阈值 downsample: [32, 16, 8]#下采样倍数 label_smooth: true#是否采用label_smooth'''

相关库引用:
import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import ParamAttr from paddle.regularizer import L2Decay from ppdet.core.workspace import register from ..backbone.darknet import ConvBNLayer

YOLOv3Head模块,其中loss是下面YOLOv3Loss:
@register class YOLOv3Head(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['loss']def __init__(self, anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]], anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]], num_classes=80, loss='YOLOv3Loss'): super(YOLOv3Head, self).__init__() self.num_classes = num_classes self.loss = lossself.parse_anchor(anchors, anchor_masks) self.num_outputs = len(self.anchors)self.yolo_outputs = [] for i in range(len(self.anchors)): num_filters = self.num_outputs * (self.num_classes + 5) name = 'yolo_output.{}'.format(i) yolo_output = self.add_sublayer( name, nn.Conv2D( in_channels=1024 // (2**i), out_channels=num_filters, kernel_size=1, stride=1, padding=0, weight_attr=ParamAttr(name=name + '.conv.weights'), bias_attr=ParamAttr( name=name + '.conv.bias', regularizer=L2Decay(0.)))) self.yolo_outputs.append(yolo_output) #anchor解析 def parse_anchor(self, anchors, anchor_masks): self.anchors = [[anchors[i] for i in mask] for mask in anchor_masks] self.mask_anchors = [] anchor_num = len(anchors) for masks in anchor_masks: self.mask_anchors.append([]) for mask in masks: assert mask < anchor_num, "anchor mask index overflow" self.mask_anchors[-1].extend(anchors[mask]) #前向传播 def forward(self, feats): assert len(feats) == len(self.anchors) yolo_outputs = [] for i, feat in enumerate(feats): yolo_output = self.yolo_outputs[i](feat) yolo_outputs.append(yolo_output) return yolo_outputs #计算loss def get_loss(self, inputs, targets): return self.loss(inputs, targets, self.anchors)

modeling/loss/yolo_loss.py解析:
在yaml的配置文件:
''' YOLOv3Loss: ignore_thresh: 0.7 downsample: [32, 16, 8] label_smooth: false '''

相关库引用:
from __future__ import absolute_import from __future__ import division from __future__ import print_functionimport paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import registerfrom ..utils import decode_yolo, xywh2xyxy, iou_similarity__all__ = ['YOLOv3Loss']

yolo loss模块:
@register class YOLOv3Loss(nn.Layer):__inject__ = ['iou_loss', 'iou_aware_loss'] __shared__ = ['num_classes']def __init__(self, num_classes=80, ignore_thresh=0.7, label_smooth=False, downsample=[32, 16, 8], scale_x_y=1., iou_loss=None, iou_aware_loss=None): super(YOLOv3Loss, self).__init__() self.num_classes = num_classes self.ignore_thresh = ignore_thresh self.label_smooth = label_smooth self.downsample = downsample self.scale_x_y = scale_x_y self.iou_loss = iou_loss self.iou_aware_loss = iou_aware_loss # 目标损失 def obj_loss(self, pbox, gbox, pobj, tobj, anchor, downsample): b, h, w, na = pbox.shape[:4] pbox = decode_yolo(pbox, anchor, downsample) pbox = pbox.reshape((b, -1, 4)) pbox = xywh2xyxy(pbox) gbox = xywh2xyxy(gbox)iou = iou_similarity(pbox, gbox) iou.stop_gradient = True iou_max = iou.max(2)# [N, M1] iou_mask = paddle.cast(iou_max <= self.ignore_thresh, dtype=pbox.dtype) iou_mask.stop_gradient = Truepobj = pobj.reshape((b, -1)) tobj = tobj.reshape((b, -1)) obj_mask = paddle.cast(tobj > 0, dtype=pbox.dtype) obj_mask.stop_gradient = Trueloss_obj = F.binary_cross_entropy_with_logits( pobj, obj_mask, reduction='none') loss_obj_pos = (loss_obj * tobj) loss_obj_neg = (loss_obj * (1 - obj_mask) * iou_mask) return loss_obj_pos + loss_obj_neg # 分类损失 def cls_loss(self, pcls, tcls): if self.label_smooth: delta = min(1. / self.num_classes, 1. / 40) pos, neg = 1 - delta, delta # 1 for positive, 0 for negative tcls = pos * paddle.cast( tcls > 0., dtype=tcls.dtype) + neg * paddle.cast( tcls <= 0., dtype=tcls.dtype)loss_cls = F.binary_cross_entropy_with_logits( pcls, tcls, reduction='none') return loss_cls # 计算总 yolo loss def yolov3_loss(self, x, t, gt_box, anchor, downsample, scale=1., eps=1e-10): na = len(anchor) b, c, h, w = x.shape no = c // na x = x.reshape((b, na, no, h, w)).transpose((0, 3, 4, 1, 2))xy, wh, obj = x[:, :, :, :, 0:2], x[:, :, :, :, 2:4], x[:, :, :, :, 4:5] if self.iou_aware_loss: ioup, pcls = x[:, :, :, :, 5:6], x[:, :, :, :, 6:] else: pcls = x[:, :, :, :, 5:]t = t.transpose((0, 3, 4, 1, 2)) txy, twh, tscale = t[:, :, :, :, 0:2], t[:, :, :, :, 2:4], t[:, :, :, :, 4:5] tobj, tcls = t[:, :, :, :, 5:6], t[:, :, :, :, 6:]tscale_obj = tscale * tobj loss = dict() if abs(scale - 1.) < eps: loss_xy = tscale_obj * F.binary_cross_entropy_with_logits( xy, txy, reduction='none') else: xy = scale * F.sigmoid(xy) - 0.5 * (scale - 1.) loss_xy = tscale_obj * paddle.abs(xy - txy)loss_xy = loss_xy.sum([1, 2, 3, 4]).mean() loss_wh = tscale_obj * paddle.abs(wh - twh) loss_wh = loss_wh.sum([1, 2, 3, 4]).mean()loss['loss_loc'] = loss_xy + loss_whx[:, :, :, :, 0:2] = scale * F.sigmoid(x[:, :, :, :, 0:2]) - 0.5 * ( scale - 1.) box, tbox = x[:, :, :, :, 0:4], t[:, :, :, :, 0:4] if self.iou_loss is not None: # box and tbox will not change though they are modified in self.iou_loss function, so no need to clone loss_iou = self.iou_loss(box, tbox, anchor, downsample, scale) loss_iou = loss_iou * tscale_obj.reshape((b, -1)) loss_iou = loss_iou.sum(-1).mean() loss['loss_iou'] = loss_iouif self.iou_aware_loss is not None: # box and tbox will not change though they are modified in self.iou_aware_loss function, so no need to clone loss_iou_aware = self.iou_aware_loss(ioup, box, tbox, anchor, downsample, scale) loss_iou_aware = loss_iou_aware * tobj.reshape((b, -1)) loss_iou_aware = loss_iou_aware.sum(-1).mean() loss['loss_iou_aware'] = loss_iou_awareloss_obj = self.obj_loss(box, gt_box, obj, tobj, anchor, downsample) loss_obj = loss_obj.sum(-1).mean() loss['loss_obj'] = loss_obj loss_cls = self.cls_loss(pcls, tcls) * tobj loss_cls = loss_cls.sum([1, 2, 3, 4]).mean() loss['loss_cls'] = loss_cls return loss #前向传播 def forward(self, inputs, targets, anchors): np = len(inputs) gt_targets = [targets['target{}'.format(i)] for i in range(np)] gt_box = targets['gt_bbox'] yolo_losses = dict() for x, t, anchor, downsample in zip(inputs, gt_targets, anchors, self.downsample): yolo_loss = self.yolov3_loss(x, t, gt_box, anchor, downsample) for k, v in yolo_loss.items(): if k in yolo_losses: yolo_losses[k] += v else: yolo_losses[k] = vloss = 0 for k, v in yolo_losses.items(): loss += vyolo_losses['loss'] = loss return yolo_losses

Post_process部分:
post_process.py源码解析:
配置文件解析:
''' BBoxPostProcess:#初始化 decode: name: YOLOBox#类名 conf_thresh: 0.005#阈值 downsample_ratio: 32#下采样比例 clip_bbox: true#是否clip_bbox nms:#nms实例化 name: MultiClassNMS# nms 类型参数,可以设置为[MultiClassNMS, MultiClassSoftNMS, MatrixNMS], 默认使用 MultiClassNMS keep_top_k: 100#bbox最大个数 score_threshold: 0.01#置信度阈值 nms_threshold: 0.45#nms阈值 nms_top_k: 1000#nms最大框个数 normalized: false#是否正则化 background_label: -1#是否有背景类 '''

相关库引用:
''' BBoxPostProcess:#初始化 decode: name: YOLOBox#类名 conf_thresh: 0.005#阈值 downsample_ratio: 32#下采样比例 clip_bbox: true#是否clip_bbox nms:#nms实例化 name: MultiClassNMS# nms 类型参数,可以设置为[MultiClassNMS, MultiClassSoftNMS, MatrixNMS], 默认使用 MultiClassNMS keep_top_k: 100#bbox最大个数 score_threshold: 0.01#置信度阈值 nms_threshold: 0.45#nms阈值 nms_top_k: 1000#nms最大框个数 normalized: false#是否正则化 background_label: -1#是否有背景类 '''

BBox后处理模块
@register class BBoxPostProcess(object): __inject__ = ['decode', 'nms']def __init__(self, decode=None, nms=None): super(BBoxPostProcess, self).__init__() self.decode = decode self.nms = nmsdef __call__(self, head_out, rois, im_shape, scale_factor=None, var_weight=1.): bboxes, score = self.decode(head_out, rois, im_shape, scale_factor, var_weight) bbox_pred, bbox_num, _ = self.nms(bboxes, score) return bbox_pred, bbox_num

mask后处理模块:
@register class MaskPostProcess(object): __shared__ = ['mask_resolution']def __init__(self, mask_resolution=28, binary_thresh=0.5): super(MaskPostProcess, self).__init__() self.mask_resolution = mask_resolution self.binary_thresh = binary_threshdef __call__(self, bboxes, mask_head_out, im_shape, scale_factor=None): # TODO: modify related ops for deploying bboxes_np = (i.numpy() for i in bboxes) mask = mask_post_process(bboxes_np, mask_head_out.numpy(), im_shape.numpy(), scale_factor[:, 0].numpy(), self.mask_resolution, self.binary_thresh) mask = {'mask': mask} return mask

优化器部分:
ppdet/optimizer.py源码解析: 在yaml的配置文件:./_base_/optimizers/yolov3_270e.yml
''' #./_base_/optimizers/yolov3_270e.ymlepoch: 270#训练epoch数LearningRate:#实例化学习率 # 初始学习率, 一般情况下8卡gpu,batch size为2时设置为0.02 # 可以根据具体情况,按比例调整 # 比如说4卡V100,bs=2时,设置为0.01 base_lr: 0.001#学习率 # if epoch < 216: #learning_rate = 0.1 # elif 216 <= epoch < 243: #learning_rate = 0.1 * 0.1 # else: #learning_rate = 0.1 * (0.1)**2 schedulers:#实例化优化器策略 - !PiecewiseDecay #分段式衰减 gamma: 0.1#衰减系数 milestones:#衰减点[列表] - 216#在epoch为216时学习率衰减一次 - 243#在epoch为243时学习率衰再减一次 # 在训练开始时,调低学习率为base_lr * start_factor,然后逐步增长到base_lr,这个过程叫学习率热身,按照以下公式更新学习率 # linear_step = end_lr - start_lr # lr = start_lr + linear_step * (global_step / warmup_steps) # 具体实现参考[API](fluid.layers.linear_lr_warmup) - !LinearWarmup#学习率从非常小的数值线性增加到预设值之后,然后再线性减小。 start_factor: 0.#初始值 steps: 4000#线性增长步长OptimizerBuilder:#构建优化器 optimizer:#优化器 momentum: 0.9#动量系数 type: Momentum #类型 regularizer:#正则初始化 factor: 0.0005 #正则系数 type: L2#L2正则

相关库引用:
from __future__ import absolute_import from __future__ import division from __future__ import print_functionimport math import loggingimport paddle import paddle.nn as nnimport paddle.optimizer as optimizer import paddle.fluid.regularizer as regularizer from paddle import cosfrom ppdet.core.workspace import register, serializable__all__ = ['LearningRate', 'OptimizerBuilder']logger = logging.getLogger(__name__)

分段式衰减模块(调整学习率):
@serializable class PiecewiseDecay(object): """ Multi step learning rate decayArgs: gamma (float | list): decay factor milestones (list): steps at which to decay learning rate """def __init__(self, gamma=[0.1, 0.01], milestones=[60000, 80000]): super(PiecewiseDecay, self).__init__() if type(gamma) is not list: self.gamma = [] for i in range(len(milestones)): self.gamma.append(gamma / 10**i) else: self.gamma = gamma self.milestones = milestonesdef __call__(self, base_lr=None, boundary=None, value=https://www.it610.com/article/None): if boundary is not None: boundary.extend(self.milestones)if value is not None: for i in self.gamma: value.append(base_lr * i)return optimizer.lr.PiecewiseDecay(boundary, value)

线性预热模块(调整学习率):
@serializable class LinearWarmup(object): """ Warm up learning rate linearlyArgs: steps (int): warm up steps start_factor (float): initial learning rate factor """def __init__(self, steps=500, start_factor=1. / 3): super(LinearWarmup, self).__init__() self.steps = steps self.start_factor = start_factordef __call__(self, base_lr): boundary = [] value = https://www.it610.com/article/[] for i in range(self.steps + 1): alpha = i / self.steps factor = self.start_factor * (1 - alpha) + alpha lr = base_lr * factor value.append(lr) if i> 0: boundary.append(i) return boundary, value

学习率优化模块(将上面两种学习率优化方法调入):
@register class LearningRate(object): """ Learning Rate configurationArgs: base_lr (float): base learning rate schedulers (list): learning rate schedulers """ __category__ = 'optim'def __init__(self, base_lr=0.01, schedulers=[PiecewiseDecay(), LinearWarmup()]): super(LearningRate, self).__init__() self.base_lr = base_lr self.schedulers = schedulersdef __call__(self): # TODO: split warmup & decay # warmup boundary, value = https://www.it610.com/article/self.schedulers[1](self.base_lr) # decay decay_lr = self.schedulers[0](self.base_lr, boundary, value) return decay_lr

优化器模块(学习率优化模块调入):
@register class OptimizerBuilder(): """ Build optimizer handlesArgs: regularizer (object): an `Regularizer` instance optimizer (object): an `Optimizer` instance """ __category__ = 'optim'def __init__(self, clip_grad_by_norm=None, regularizer={'type': 'L2', 'factor': .0001}, optimizer={'type': 'Momentum', 'momentum': .9}): self.clip_grad_by_norm = clip_grad_by_norm self.regularizer = regularizer self.optimizer = optimizerdef __call__(self, learning_rate, params=None): if self.clip_grad_by_norm is not None: grad_clip = nn.GradientClipByGlobalNorm( clip_norm=self.clip_grad_by_norm) else: grad_clip = Noneif self.regularizer: reg_type = self.regularizer['type'] + 'Decay' reg_factor = self.regularizer['factor'] regularization = getattr(regularizer, reg_type)(reg_factor) else: regularization = Noneoptim_args = self.optimizer.copy() optim_type = optim_args['type'] del optim_args['type'] op = getattr(optimizer, optim_type) return op(learning_rate=learning_rate, parameters=params, weight_decay=regularization, grad_clip=grad_clip, **optim_args)

【笔记|PaddleDetection-YOLOv3模型结构解析(二)】由此整个YOLOV3完整的pipeline就是这样通过yaml文件构建好了,后面根据train、test、val的具体应用情况来拔插相应的模块。

    推荐阅读