Redis|缓存穿透、缓存击穿、缓存雪崩区别

一、缓存处理流程
前台请求,后台先从缓存中取数据,取到直接返回结果,取不到时从数据库中取,数据库取到更新缓存,并返回结果,数据库也没取到,那直接返回空结果。
Redis|缓存穿透、缓存击穿、缓存雪崩区别
文章图片

二、缓存穿透
描述:
缓存穿透是指缓存和数据库中都没有的数据,而用户不断发起请求,如发起为id为“-1”的数据或id为特别大不存在的数据。这时的用户很可能是攻击者,攻击会导致数据库压力过大。
解决方案:
1、接口校验。在正常业务流程中可能会存在少量访问不存在 key 的情况,但是一般不会出现大量的情况,所以这种场景最大的可能性是遭受了非法攻击。可以在最外层先做一层校验:用户鉴权、数据合法性校验等,例如商品查询中,商品的ID是正整数,则可以直接对非正整数直接过滤等等。接口层增加校验,如用户鉴权校验,id做基础校验,id<=0的直接拦截;

2、缓存空值。当访问缓存和DB都没有查询到值时,可以将空值写进缓存,但是设置较短的过期时间,该时间需要根据产品业务特性来设置。
从缓存取不到的数据,在数据库中也没有取到,这时也可以将key-value对写为key-null,缓存有效时间可以设置短点,如30秒(设置太长会导致正常情况也没法使用)。这样可以防止攻击用户反复用同一个id暴力攻击
3、布隆过滤器。使用布隆过滤器存储所有可能访问的 key,不存在的 key 直接被过滤,存在的 key 则再进一步查询缓存和数据库。
布隆过滤器
布隆过滤器的特点是判断不存在的,则一定不存在;判断存在的,大概率存在,但也有小概率不存在。并且这个概率是可控的,我们可以让这个概率变小或者变高,取决于用户本身的需求。

布隆过滤器由一个 bitSet 和 一组 Hash 函数(算法)组成,是一种空间效率极高的概率型算法和数据结构,主要用来判断一个元素是否在集合中存在。

在初始化时,bitSet 的每一位被初始化为0,同时会定义 Hash 函数,例如有3组 Hash 函数:hash1、hash2、hash3。

写入流程
当我们要写入一个值时,过程如下,以“jionghui”为例:

1)首先将“jionghui”跟3组 Hash 函数分别计算,得到 bitSet 的下标为:1、7、10。

2)将 bitSet 的这3个下标标记为1。

假设我们还有另外两个值:java 和 diaosi,按上面的流程跟 3组 Hash 函数分别计算,结果如下:

java:Hash 函数计算 bitSet 下标为:1、7、11

diaosi:Hash 函数计算bitSet 下标为:4、10、11

Redis|缓存穿透、缓存击穿、缓存雪崩区别
文章图片


查询流程
当我们要查询一个值时,过程如下,同样以“jionghui”为例::

1)首先将“jionghui”跟3组 Hash 函数分别计算,得到 bitSet 的下标为:1、7、10。

2)查看 bitSet 的这3个下标是否都为1,如果这3个下标不都为1,则说明该值必然不存在,如果这3个下标都为1,则只能说明可能存在,并不能说明一定存在。

其实上图的例子已经说明了这个问题了,当我们只有值“jionghui”和“diaosi”时,bitSet 下标为1的有:1、4、7、10、11。

当我们又加入值“java”时,bitSet 下标为1的还是这5个,所以当 bitSet 下标为1的为:1、4、7、10、11 时,我们无法判断值“java”存不存在。

其根本原因是,不同的值在跟 Hash 函数计算后,可能会得到相同的下标,所以某个值的标记位,可能会被其他值给标上了。

这也是为啥布隆过滤器只能判断某个值可能存在,无法判断必然存在的原因。但是反过来,如果该值根据 Hash 函数计算的标记位没有全部都为1,那么则说明必然不存在,这个是肯定的。

降低这种误判率的思路也比较简单:

1)一个是加大 bitSet 的长度,这样不同的值出现“冲突”的概率就降低了,从而误判率也降低。

2)提升 Hash 函数的个数,Hash 函数越多,每个值对应的 bit 越多,从而误判率也降低。

布隆过滤器的误判率还有专门的推导公式,有兴趣的可以去搜相关的文章和论文查看。


HashMap 和 布隆过滤器

估计有同学看了上面的例子,会觉得使用 HashMap 也能实现。

确实,当数据量不大时,HashMap 实现起来一点问题都没有,而且还没有误判率,简直完美,还要个鸡儿布隆过滤器。


不过,当数据量上去后,布隆过滤器的空间优势就会开始体现,特别是要存储的 key 占用空间越大,布隆过滤器的优势越明显。

Guava 中的 BloomFilter 在默认情况下,误判率接近3%,大概要使用5个 Hash 函数。

也就是说一个 key 最多占用空间就是 5 bit,而且当多个 key 填充同一个 bit 时,会进一步降低使用空间。

布隆过滤器占用多少空间,主要取决于 Hash 函数的个数,跟 key 本身的大小无关,这使得其在空间的优势非常大。
三、缓存击穿
描述:
缓存击穿是指缓存中没有但数据库中有的数据(一般是缓存时间到期),这时由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,引起数据库压力瞬间增大,造成过大压力
解决方案:
1.设置热点数据永远不过期。
2.加互斥锁,互斥锁参考代码如下:
Redis|缓存穿透、缓存击穿、缓存雪崩区别
文章图片

说明:
1)缓存中有数据,直接走上述代码13行后就返回结果了
2)缓存中没有数据,第1个进入的线程,获取锁并从数据库去取数据,没释放锁之前,其他并行进入的线程会等待100ms,再重新去缓存取数据。这样就防止都去数据库重复取数据,重复往缓存中更新数据情况出现。
3)当然这是简化处理,理论上如果能根据key值加锁就更好了,就是线程A从数据库取key1的数据并不妨碍线程B取key2的数据,上面代码明显做不到这点。下面这种可以:
1、加互斥锁。在并发的多个请求中,只有第一个请求线程能拿到锁并执行数据库查询操作,其他的线程拿不到锁就阻塞等着,等到第一个线程将数据写入缓存后,直接走缓存。

关于互斥锁的选择,网上看到的大部分文章都是选择 Redis 分布式锁,因为这个可以保证只有一个请求会走到数据库,这是一种思路。

但是其实仔细想想的话,这边其实没有必要保证只有一个请求走到数据库,只要保证走到数据库的请求能大大降低即可,所以还有另一个思路是 JVM 锁。

JVM 锁保证了在单台服务器上只有一个请求走到数据库,通常来说已经足够保证数据库的压力大大降低,同时在性能上比分布式锁更好。

需要注意的是,无论是使用“分布式锁”,还是“JVM 锁”,加锁时要按 key 维度去加锁。

我看网上很多文章都是使用一个“固定的 key”加锁,这样会导致不同的 key 之间也会互相阻塞,造成性能严重损耗。
使用 redis 分布式锁的伪代码,仅供参考:

public Object getData(String key) throws InterruptedException { Object value = https://www.it610.com/article/redis.get(key); // 缓存值过期 if (value == null) { // lockRedis:专门用于加锁的redis; //"empty":加锁的值随便设置都可以 if (lockRedis.set(key, "empty", "PX", lockExpire, "NX")) { try { // 查询数据库,并写到缓存,让其他线程可以直接走缓存 value = https://www.it610.com/article/getDataFromDb(key); redis.set(key, value,"PX", expire); } catch (Exception e) { // 异常处理 } finally { // 释放锁 lockRedis.delete(key); } } else { // sleep50ms后,进行重试 Thread.sleep(50); return getData(key); } } return value; }

2、热点数据不过期。直接将缓存设置为不过期,然后由定时任务去异步加载数据,更新缓存。

这种方式适用于比较极端的场景,例如流量特别特别大的场景,使用时需要考虑业务能接受数据不一致的时间,还有就是异常情况的处理,不要到时候缓存刷新不上,一直是脏数据,那就凉了。
四、缓存雪崩
描述:
缓存雪崩是指缓存中数据大批量到过期时间,而查询数据量巨大,引起数据库压力过大甚至down机。和缓存击穿不同的是,缓存击穿指并发查同一条数据,缓存雪崩是不同数据都过期了,很多数据都查不到从而查数据库。
解决方案:
1、过期时间打散。既然是大量缓存集中失效,那最容易想到就是让他们不集中生效。可以给缓存的过期时间时加上一个随机值时间,使得每个 key 的过期时间分布开来,不会集中在同一时刻失效。缓存数据的过期时间设置随机,防止同一时间大量数据过期现象发生。

2、热点数据不过期。该方式和缓存击穿一样,也是要着重考虑刷新的时间间隔和数据异常如何处理的情况。

3、加互斥锁。该方式和缓存击穿一样,按 key 维度加锁,对于同一个 key,只允许一个线程去计算,其他线程原地阻塞等待第一个线程的计算结果,然后直接走缓存即可。

参考:
缓存穿透、缓存击穿、缓存雪崩解决方案_程序员囧辉的博客-CSDN博客
【Redis|缓存穿透、缓存击穿、缓存雪崩区别】缓存穿透、缓存击穿、缓存雪崩区别和解决方案_每天进步一点点yes的博客-CSDN博客_缓存击穿

    推荐阅读