#|MySQL-高级-9 索引优化及查询优化


文章目录

  • 1.索引失效案例
    • 1.1 全值匹配我最爱
    • 1.2 最佳左前缀法则
    • 1.3 主键插入顺序
    • 1.4 计算、函数、类型转换(自动或手动)导致索引失效
    • 1.5 范围条件右边的列索引失效
    • 1.6 不等于(!= 或者 <>)失效
    • 1.7 is null可以使用索引,is not null 无法使用索引
    • 1.8 like以通配符%开头索引失效
    • 1.9 OR前后存在非索引的列,索引失效
    • 1.10 数据库和表的字符集统一使用utf8mb4
  • 2.关联查询优化
    • 2.1 Index Nested-Loop Join(索引嵌套循环连接)
    • 2.2 Block Nested-Loop join(块嵌套循环连接)
    • 2.3 Hash join
    • 2.4 小结
  • 3.子查询优化
  • 4.排序优化
    • 4.1 filesort算法:双路排序和单路排序
  • 5.GROUP BY 优化
  • 6.优化分页查询
  • 7. 优先考虑覆盖索引
    • 7.1 什么是覆盖索引?
    • 7.2 覆盖索引的利弊
  • 8.索引下推
    • 8.1使用前后的扫描过程
    • 8.2 ICP的使用条件
  • 9.普通索引 VS 唯一索引
    • 9.1 查询过程
    • 9.2 更新过程
    • 9.3 change buffer的使用场景
  • 10 其它查询优化策略
    • 10.1 EXISTS和IN的区分
    • 10.2 COUNT(*)与COUNT(具体字段)效率
    • 10.3 关于SELECT(*)
    • 10.4 LIMIT 1对优化的影响
    • 10.5 多使用COMMIT
  • 11.主键如何设计?
    • 11.1 自增ID的问题
    • 11.2 推荐的主键设计

1.索引失效案例 MySQL中提高性能的一个最有效的方式是对数据表设计合理的索引。索引提供了访问高效数据的方法,并且加快查询的速度,因此索引对查询的速度有着至关重要的影响。
  • 使用索引可以快速地定位表中的某条记录,从而提高数据库查询的速度,提高数据库的性能。
  • 如果查询时没有使用索引,查询语句就会扫描表中的所有记录。在数据量大的情况下,这样查询的速度会很慢。
大多数情况下都(默认)采用B+树来构建索引。只是空间列类型的索引使用R-树,并且MEMORY表还支持hash索引
其实,用不用索引,最终都是优化器说了算。优化器是基于什么的优化器?基于cost开销(CostBaseOptimizer),它不是基于规则(Rule-BasedOptimizer),也不是基于语义。怎么样开销小就怎么来。另外,SQL语句是否使用索引,跟数据库版本、数据量、数据选择度都有关系。
1.1 全值匹配我最爱 无论是普通索引还是联合索引,只要查询的语句可以使用的到,那就是一个好索引。
1.2 最佳左前缀法则 在MySQL建立联合索引时会遵守最佳左前缀匹配原则,即最左优先,在检索数据时从联合索引的最左边开始匹配。
结论:MySQL可以为多个字段创建索引,一个索引可以包括16个字段。对于多列索引,**过滤条件要使用索引必须按照索引建立时的顺序,依次满足,一旦跳过某个字段,索引后面的字段都无法被使用。**如果查询条件中没有使用这些字段中第1个字段时,多列(或联合)索引不会被使用。
1.3 主键插入顺序 对于一个使用InnoDB存储引擎的表来说,在我们没有显示的创建索引时,表中的数据实际上都是存储在聚簇索引的叶子节点的。而记录又存储在数据页中的,数据页和记录又是按照记录主键值从小到大的顺序进行排序,所以如果我们插入的记录的主键值是依次增大的话,那我们每插满一个数据页就换到下一个数据页继续插,而如果我们插入的主键值忽小忽大的话,则可能会造成页面分裂记录移位
1.4 计算、函数、类型转换(自动或手动)导致索引失效 对于存在索引的字段而言,如果使用其参加计算,使用函数,或者进行类型转换,都会导致索引失效。
1.5 范围条件右边的列索引失效
应用开发中范围查询,例如:金额查询,日期查询往往都是范围查询。应将查询条件放置where语句最后。(创建的联合索引中,务必把范围涉及到的字段写在最后)
1.6 不等于(!= 或者 <>)失效 根据索引的数据类型来看,数据从小到大顺序排列,如果进行不等于操作,那就等于定位到了值相等的数据列,再单独去除此列,还不如直接进行全表扫描。
1.7 is null可以使用索引,is not null 无法使用索引 is null就是一个定值,当然可以使用索引进行查找,而is not null 是一个范围值,同!=.
结论:最好在设计数据表的时候就将字段设置为 NOT NULL 约束,比如你可以将INT类型的字段,默认值设置为0。将字符类型的默认值设置为空字符串(‘’)
拓展:同理,在查询中使用not like也无法使用索引,导致全表扫描
1.8 like以通配符%开头索引失效
拓展:Alibaba《Java开发手册》
【强制】页面搜索严禁左模糊或者全模糊,如果需要请走搜索引擎来解决。
1.9 OR前后存在非索引的列,索引失效 在WHERE子句中,如果在OR前的条件列进行了索引,而在OR后的条件列没有进行索引,那么索引会失效。也就是说,OR前后的两个条件中的列都是索引时,查询中才使用索引。
1.10 数据库和表的字符集统一使用utf8mb4 统一使用utf8mb4( 5.5.3版本以上支持)兼容性更好,统一字符集可以避免由于字符集转换产生的乱码。不同的字符集进行比较前需要进行转换会造成索引失效。
2.关联查询优化
结论1:对于内连接来说,查询优化器可以决定谁来作为驱动表,谁作为被驱动表出现
结论2:对于内连接来讲,如果表的连接条件中只能有一个字段有索引,则有索引的字段所在的表会被作为被驱动表
结论3:对于内连接来说,在两个表的连接条件都存在索引的情况下,会选择小表作为驱动表。小表驱动大表
2.1 Index Nested-Loop Join(索引嵌套循环连接) Index Nested-Loop Join其优化的思路主要是为了减少内层表数据的匹配次数,所以要求被驱动表上必须有索引才行。
#|MySQL-高级-9 索引优化及查询优化
文章图片

2.2 Block Nested-Loop join(块嵌套循环连接) 如果存在索引,那么会使用index的方式进行join,如果join的列没有索引,被驱动表要扫描的次数太多了。每次访问被驱动表,其表中的记录都会被加载到内存中,然后再从驱动表中取一条与其匹配,匹配结束后清除内存,然后再从驱动表中加载一条记录,然后把被驱动表的记录再加载到内存匹配,这样周而复始,大大增加了IO的次数。为了减少被驱动表的IO次数,就出现了Block Nested-Loop Join的方式。
不再是逐条获取驱动表的数据,而是一块一块的获取,引入了join buffer缓冲区,将驱动表join相关的部分数据列(大小受join buffer的限制)缓存到join buffer中,然后全表扫描被驱动表,被驱动表的每一条记录一次性和join buffer中的所有驱动表记录进行匹配(内存中操作),将简单嵌套循环中的多次比较合并成一次,降低了被驱动表的访问频率。
#|MySQL-高级-9 索引优化及查询优化
文章图片

2.3 Hash join 从MySQL的8.0.20版本开始将废弃BNLJ,因为从MySQL8.0.18版本开始就加入了hash join默认都会使用hash join
  • Nested Loop:对于被连接的数据子集较小的情况下,Nested Loop是个较好的选择。
  • Hash Join是做大数据集连接时的常用方式,优化器使用两个表中较小(相对较小)的表利用Join Key在内存中建立散列值,然后扫描较大的表并探测散列值,找出与Hash表匹配的行。
    • 这种方式适用于较小的表完全可以放入内存中的情况,这样总成本就是访问两个表的成本之和。
    • 在表很大的情况下并不能完全放入内存,这时优化器会将它分割成若干不同的分区,不能放入内存的部分就把该分区写入磁盘的临时段,此时要求有较大的临时段从而尽量提高I/O的性能。
    • 它能够很好的工作于没有索引的大表和并行查询的环境中,并提供最好的性能。Hash Join只能应用于等值连接,这是由Hash的特点决定的。
2.4 小结
  • 保证被驱动表的JOIN字段已经创建了索引
  • 需要JOIN 的字段,数据类型保持绝对一致。
  • LEFT JOIN 时,选择小表作为驱动表, 大表作为被驱动表 。减少外层循环的次数。
  • INNER JOIN 时,MySQL会自动将 小结果集的表选为驱动表 。选择相信MySQL优化策略。 能够直接多表关联的尽量直接关联,不用子查询。(减少查询的趟数) 不建议使用子查询,建议将子查询SQL拆开结合程序多次查询,或使用 JOIN 来代替子查询。 衍生表建不了索引
3.子查询优化 子查询是 MySQL 的一项重要的功能,可以帮助我们通过一个 SQL **语句实现比较复杂的查询。但是,子查询的执行效率不高。**原因:
① 执行子查询时,MySQL需要为内层查询语句的查询结果建立一个临时表,然后外层查询语句从临时表中查询记录。查询完毕后,再撤销这些临时表。这样会消耗过多的CPU和IO资源,产生大量的慢查询。
② 子查询的结果集存储的临时表,不论是内存临时表还是磁盘临时表都不会存在索引,所以查询性能会受到一定的影响。
③ 对于返回结果集比较大的子查询,其对查询性能的影响也就越大。
**在MySQL中,可以使用连接(JOIN)查询来替代子查询。**连接查询不需要建立临时表,其速度比子查询要快,如果查询中使用索引的话,性能就会更好。
结论:尽量不要使用NOT IN 或者 NOT EXISTS,用LEFT JOIN xxx ON xx WHERE xx IS NULL替代
4.排序优化
  1. SQL 中,可以在 WHERE 子句和 ORDER BY 子句中使用索引,目的是在 WHERE 子句中 避免全表扫描,在 ORDER BY 子句避免使用 FileSort 排序。当然,某些情况下全表扫描,或者 FileSort 排序不一定比索引慢。但总的来说,我们还是要避免,以提高查询效率。
  2. 尽量使用 Index 完成 ORDER BY 排序。如果 WHERE 和 ORDER BY 后面是相同的列就使用单索引列;如果不同就使用联合索引。
  3. 无法使用 Index 时,需要对 FileSort 方式进行调优。
4.1 filesort算法:双路排序和单路排序 双路排序:慢
  • MySQL 4.1之前是使用双路排序 ,字面意思就是两次扫描磁盘,最终得到数据, 读取行指针和 order by列 ,对他们进行排序,然后扫描已经排序好的列表,按照列表中的值重新从列表中读取 对应的数据输出
  • 从磁盘取排序字段,在buffer进行排序,再从磁盘取其他字段 。
取一批数据,要对磁盘进行两次扫描,众所周知,IO是很耗时的,所以在mysql4.1之后,出现了第二种 改进的算法,就是单路排序。
单路排序:快
从磁盘读取查询需要的所有列按照order by列在buffer对它们进行排序,然后扫描排序后的列表进行输 出, 它的效率更快一些,避免了第二次读取数据。并且把随机IO变成了顺序IO,但是它会使用更多的空 间, 因为它把每一行都保存在内存中了。
5.GROUP BY 优化
  • group by 使用索引的原则几乎跟order by一致 ,group by 即使没有过滤条件用到索引,也可以直接使用索引。
  • group by 先排序再分组,遵照索引建的最佳左前缀法则
  • 当无法使用索引列,可以增大max_length_for_sort_datasort_buffer_size参数的设置
  • where效率高于having,能写在where限定的条件就不要写在having中了
  • 减少使用order by,和业务沟通能不排序就不排序,或将排序放到程序端去做。Order by、group by、distinct这些语句较为耗费CPU,数据库的CPU资源是极其宝贵的。
  • 包含了order by、group by、distinct这些查询的语句,where条件过滤出来的结果集请保持在1000行以内,否则SQL会很慢。
6.优化分页查询 优化思路一
在索引上完成排序分页操作,最后根据主键关联回原表查询所需要的其他列内容。
EXPLAIN SELECT * FROM student t,(SELECT id FROM student ORDER BY id LIMIT 2000000,10) a WHERE t.id = a.id;

优化思路二
该方案适用于主键自增的表,可以把Limit 查询转换成某个位置的查询。
EXPLAIN SELECT * FROM student WHERE id > 2000000 LIMIT 10;

7. 优先考虑覆盖索引 7.1 什么是覆盖索引? 理解方式一:索引是高效找到行的一个方法,但是一般数据库也能使用索引找到一个列的数据,因此它不必读取整个行。毕竟索引叶子节点存储了它们索引的数据;当能通过读取索引就可以得到想要的数据,那就不需要读取行了。一个索引包含了满足查询结果的数据就叫做覆盖索引。
理解方式二:非聚簇复合索引的一种形式,它包括在查询里的SELECT、JOIN和WHERE子句用到的所有列(即建索引的字段正好是覆盖查询条件中所涉及的字段)。
简单说就是,索引列+主键包含SELECT 到 FROM之间查询的列
7.2 覆盖索引的利弊 好处:
1. 避免Innodb表进行索引的二次查询(回表)
2. 可以把随机IO变成顺序IO加快查询效率
弊端:
索引字段的维护总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。这是业务DBA,或者称为业务数据架构师的工作。
8.索引下推 Index Condition Pushdown(ICP)是MySQL 5.6中新特性,是一种在存储引擎层使用索引过滤数据的一种优 化方式。ICP可以减少存储引擎访问基表的次数以及MySQL服务器访问存储引擎的次数。
8.1使用前后的扫描过程 在不使用ICP索引扫描的过程:
storage层:只将满足index key条件的索引记录对应的整行记录取出,返回给server层
server 层:对返回的数据,使用后面的where条件过滤,直至返回最后一行。
#|MySQL-高级-9 索引优化及查询优化
文章图片

#|MySQL-高级-9 索引优化及查询优化
文章图片

使用ICP扫描的过程:
storage层:首先将index key条件满足的索引记录区间确定,然后在索引上使用index filter进行过滤。将满足的index filter条件的索引记录才去回表取出整行记录返回server层。不满足index filter条件的索引记录丢弃,不回表、也不会返回server层。
server 层:对返回的数据,使用table filter条件做最后的过滤。
#|MySQL-高级-9 索引优化及查询优化
文章图片

#|MySQL-高级-9 索引优化及查询优化
文章图片

使用前后的成本差别
使用前,存储层多返回了需要被index filter过滤掉的整行记录
使用ICP后,直接就去掉了不满足index filter条件的记录,省去了他们回表和传递到server层的成本。
ICP的加速效果取决于在存储引擎内通过ICP筛选掉的数据的比例。
8.2 ICP的使用条件 ① 只能用于二级索引(secondary index)
②explain显示的执行计划中type值(join 类型)为 range 、 ref 、 eq_ref 或者 ref_or_null
③ 并非全部where条件都可以用ICP筛选,如果where条件的字段不在索引列中,还是要读取整表的记录 到server端做where过滤。
④ ICP可以用于MyISAM和InnnoDB存储引擎
⑤ MySQL 5.6版本的不支持分区表的ICP功能,5.7版本的开始支持。
⑥ 当SQL使用覆盖索引时,不支持ICP优化方法
9.普通索引 VS 唯一索引 从性能的角度考虑,你选择唯一索引还是普通索引呢?选择的依据是什么呢?
假设,我们有一个主键列为ID的表,表中有字段k,并且在k上有索引,假设字段 k 上的值都不重复。
这个表的建表语句是:
create table test( id int primary key, k int not null, name varchar(16), index (k) )engine=InnoDB;

表中R1~R5的(ID,k)值分别为(100,1)、(200,2)、(300,3)、(500,5)和(600,6)。
9.1 查询过程 假设,执行查询的语句是 select id from test where k=5。
  • 对于普通索引来说,查找到满足条件的第一个记录(5,500)后,需要查找下一个记录,直到碰到第一 个不满足k=5条件的记录。
  • 对于唯一索引来说,由于索引定义了唯一性,查找到第一个满足条件的记录后,就会停止继续检索。
那么,这个不同带来的性能差距会有多少呢?答案是 微乎其微
9.2 更新过程 为了说明普通索引和唯一索引对更新语句性能的影响这个问题,介绍一下change buffer。
当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话, 在不影响数据一致性的前提下, InooDB会将这些更新操作缓存在change buffer中 ,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行change buffer中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性。
将change buffer中的操作应用到原数据页,得到最新结果的过程称为 merge 。除了访问这个数据页会触 发merge外,系统有后台线程会定期 merge。在 数据库正常关闭(shutdown) 的过程中,也会执行merge 操作。
如果能够将更新操作先记录在change buffer,减少读磁盘 ,语句的执行速度会得到明显的提升。而且, 数据读入内存是需要占用 buffer pool 的,所以这种方式还能够避免占用内存,提高内存利用率。
唯一索引的更新就不能使用change buffer ,实际上也只有普通索引可以使用。
9.3 change buffer的使用场景
  1. 普通索引和唯一索引应该怎么选择?其实,这两类索引在查询能力上是没差别的,主要考虑的是对更新性能的影响。所以,建议 尽量选择普通索引
  2. 在实际使用中会发现, 普通索引change buffer 的配合使用,对于数据量大的表的更新优化还是很明显的。
  3. 如果所有的更新后面,都马上伴随着对这个记录的查询,那么你应该关闭change buffer。而在其他情况下,change buffer都能提升更新性能。
  4. 由于唯一索引用不上change buffer的优化机制,因此如果业务可以接受 ,从性能角度出发建议优先考虑非唯一索引。但是如果"业务可能无法确保"的情况下,怎么处理呢?
    • 首先, 业务正确性优先。我们的前提是“业务代码已经保证不会写入重复数据”的情况下,讨论性能 问题。如果业务不能保证,或者业务就是要求数据库来做约束,那么没得选,必须创建唯一索引。 这种情况下,本节的意义在于,如果碰上了大量插入数据慢、内存命中率低的时候,给你多提供一 个排查思路。
    • 然后,在一些“归档库”的场景,你是可以考虑使用唯一索引的。比如,线上数据只需要保留半年, 然后历史数据保存在归档库。这时候,归档数据已经是确保没有唯一键冲突了。要提高归档效率, 可以考虑把表里面的唯一索引改成普通索引。
10 其它查询优化策略 10.1 EXISTS和IN的区分 索引是个前提,其实选择与否还会要看表的大小。你可以将选择的标准理解为小表驱动大表
10.2 COUNT(*)与COUNT(具体字段)效率 环节1:COUNT(*)COUNT(1)都是对所有结果进行COUNTCOUNT(*)COUNT(1)本质上并没有区别(二者执行时间可能略有差别,不过你还是可以把它俩的执行效率看成是相等的)。如果有WHERE子句,则是对所有符合筛选条件的数据行进行统计;如果没有WHERE子句,则是对数据表的数据行数进行统计。
环节2:如果是MyISAM存储引擎,统计数据表的行数只需要O(1)的复杂度,这是因为每张MyISAM的数据表都有一个meta信息存储了row_count值,而一致性则是由表级锁来保证的。
如果是InnoDB存储引擎,因为InnoDB支持事务,采用行级锁和MVCC机制,所以无法像MyISAM一样,维护一个row_count变量,因此需要采用扫描全表,是O(n)的复杂度,进行循环+计数的方式来完成统计。
环节3:在InnoDB引擎中,如果采用COUNT(具体字段)来统计数据行数,要尽量采用二级索引。因为主键采用的索引是聚簇索引,聚簇索引包含的信息多,明显会大于二级索引(非聚簇索引)。对于COUNT(*)COUNT(1)来说,它们不需要查找具体的行,只是统计行数,系统会自动采用占用空间更小的二级索引来进行统计。
如果有多个二级索引,会使用key_len小的二级索引进行扫描。当没有二级索引的时候,才会采用主键索引来进行统计。
10.3 关于SELECT(*) 在表查询中,建议明确字段,不要使用 * 作为查询的字段列表,推荐使用SELECT <字段列表> 查询。原因:
① MySQL 在解析的过程中,会通过查询数据字典将"*"按序转换成所有列名,这会大大的耗费资源和时间。
② 无法使用覆盖索引
10.4 LIMIT 1对优化的影响 针对的是会扫描全表的 SQL 语句,如果你可以确定结果集只有一条,那么加上LIMIT 1的时候,当找到一条结果的时候就不会继续扫描了,这样会加快查询速度。
如果数据表已经对字段建立了唯一索引,那么可以通过索引进行查询,不会全表扫描的话,就不需要加上LIMIT 1了。
10.5 多使用COMMIT 只要有可能,在程序中尽量多使用 COMMIT,这样程序的性能得到提高,需求也会因为 COMMIT 所释放的资源而减少。
COMMIT 所释放的资源:
  • 回滚段上用于恢复数据的信息
  • 被程序语句获得的锁
  • redo / undo log buffer 中的空间
  • 管理上述 3 种资源中的内部花费
11.主键如何设计? 11.1 自增ID的问题 自增ID做主键,简单易懂,几乎所有数据库都支持自增类型,只是实现上各自有所不同而已。自增ID除 了简单,其他都是缺点,总体来看存在以下几方面的问题:
  1. 可靠性不高
    存在自增ID回溯的问题,这个问题直到最新版本的MySQL 8.0才修复。
  2. 安全性不高
    对外暴露的接口可以非常容易猜测对应的信息。比如:/User/1/这样的接口,可以非常容易猜测用户ID的 值为多少,总用户数量有多少,也可以非常容易地通过接口进行数据的爬取。
  3. 性能差
    自增ID的性能较差,需要在数据库服务器端生成。
  4. 交互多
    业务还需要额外执行一次类似 last_insert_id() 的函数才能知道刚才插入的自增值,这需要多一次的 网络交互。在海量并发的系统中,多1条SQL,就多一次性能上的开销。
  5. 局部唯一性
    最重要的一点,自增ID是局部唯一,只在当前数据库实例中唯一,而不是全局唯一,在任意服务器间都 是唯一的。对于目前分布式系统来说,这简直就是噩梦。
11.2 推荐的主键设计 非核心业务:对应表的主键自增ID,如告警、日志、监控等信息。
核心业务 :主键设计至少应该是全局唯一且是单调递增。全局唯一保证在各系统之间都是唯一的,单调 递增是希望插入时不影响数据库性能。
推荐最简单的一种主键设计:UUID。
UUID的特点:
全局唯一,占用36字节,数据无序,插入性能差。
认识UUID:
  • 为什么UUID是全局唯一的?
  • 为什么UUID占用36个字节?
  • 为什么UUID是无序的?
MySQL数据库的UUID组成如下所示:
UUID = 时间+UUID版本(16字节)- 时钟序列(4字节) - MAC地址(12字节)

以UUID值e0ea12d4-6473-11eb-943c-00155dbaa39d举例:
#|MySQL-高级-9 索引优化及查询优化
文章图片

为什么UUID是全局唯一的?
在UUID中时间部分占用60位,存储的类似TIMESTAMP的时间戳,但表示的是从1582-10-15 00:00:00.00 到现在的100ns的计数。可以看到UUID存储的时间精度比TIMESTAMPE更高,时间维度发生重复的概率降 低到1/100ns。
时钟序列是为了避免时钟被回拨导致产生时间重复的可能性。MAC地址用于全局唯一。
为什么UUID占用36个字节?
UUID根据字符串进行存储,设计时还带有无用"-"字符串,因此总共需要36个字节。
为什么UUID是随机无序的呢?
因为UUID的设计中,将时间低位放在最前面,而这部分的数据是一直在变化的,并且是无序。
改造UUID
若将时间高低位互换,则时间就是单调递增的了,也就变得单调递增了。MySQL 8.0可以更换时间低位和 时间高位的存储方式,这样UUID就是有序的UUID了。
MySQL 8.0还解决了UUID存在的空间占用的问题,除去了UUID字符串中无意义的"-"字符串,并且将字符 串用二进制类型保存,这样存储空间降低为了16字节。
可以通过MySQL8.0提供的uuid_to_bin函数实现上述功能,同样的,MySQL也提供了bin_to_uuid函数进行 转化:
SET @uuid = UUID(); SELECT @uuid,uuid_to_bin(@uuid),uuid_to_bin(@uuid,TRUE);

在当今的互联网环境中,非常不推荐自增ID作为主键的数据库设计。更推荐类似有序UUID的全局 唯一的实现。
【#|MySQL-高级-9 索引优化及查询优化】另外在真实的业务系统中,主键还可以加入业务和系统属性,如用户的尾号,机房的信息等。这样 的主键设计就更为考验架构师的水平了。

    推荐阅读