题目链接
题意:
给定 T ( ≤ 2 e 4 ) T (\leq 2e4) T(≤2e4)组数据,每组数据给出一个整数 n ( n ≤ 1 e 9 ) n(n \leq 1e9) n(n≤1e9),求:
A n s = ∑ m ∣ n ∑ i = 0 m ? 1 ∑ i = 0 m ? 1 [ ( i ? j ) % m >
0 ] Ans = \sum_{m|n}\sum_{i=0}^{m-1}\sum_{i=0}^{m-1}[(i*j) \% m >
0] Ans=m∣n∑?i=0∑m?1?i=0∑m?1?[(i?j)%m>0]
思路:
正难则反
转化公式为:
A n s = ∑ m ∣ n ( m 2 ? ∑ i = 0 m ? 1 ∑ i = 0 m ? 1 [ ( i ? j ) % m = 0 ] ) Ans = \sum_{m|n} (m^2 - \sum_{i=0}^{m-1}\sum_{i=0}^{m-1}[(i*j) \% m = 0]) Ans=m∣n∑?(m2?i=0∑m?1?i=0∑m?1?[(i?j)%m=0])
令
F [ n ] = ∑ i = 0 m ? 1 ∑ i = 0 m ? 1 [ ( i ? j ) % m = 0 ] F[n] = \sum_{i=0}^{m-1}\sum_{i=0}^{m-1}[(i*j) \% m = 0] F[n]=i=0∑m?1?i=0∑m?1?[(i?j)%m=0]
则
A n s = ∑ m ∣ n m 2 ? F [ m ] Ans = \sum_{m|n} m^2 - F[m] Ans=m∣n∑?m2?F[m]
【HDU|HDU 5528 狄利克雷卷积】通过打表可以发现, F F F为积性函数
故:
G [ n ] = ∑ m ∣ n F [ m ] = ∑ m ∣ n F [ m ] ? I [ n / m ] G[n] = \sum_{m|n}F[m] = \sum_{m|n}F[m]*I[n/m] G[n]=m∣n∑?F[m]=m∣n∑?F[m]?I[n/m]
两个积性函数的狄利克雷卷积仍为积性函数
故:
当 n = ∏ i = 1 t p i k i 当 n = \prod_{i=1}^tp_i^{k_i} 当n=i=1∏t?piki??
有:
G [ n ] = ∏ i = 1 t G [ p i k i ] = ∏ i = 1 t ∑ j = 0 k i F ( p i j ) G[n] = \prod_{i=1}^tG[p_i^{k_i}] = \prod_{i=1}^t\sum_{j=0}^{k_i}F(p_i^j) G[n]=i=1∏t?G[piki??]=i=1∏t?j=0∑ki??F(pij?)
故G[n]通过分解质因数可以高效求解
前面的约数平方和因为也是积性函数,同理可求。
以上。
代码:
#include
#include
#include
#include
#include
using namespace std;
typedef unsigned long long ull;
const int A = 1e5 + 10;
int pri[A], tot;
bool vis[A];
void Init(){
tot = 0;
for (int i = 2;
i < A;
i++) {
if (!vis[i]) pri[++tot] = i;
for (int j = 1;
j <= tot && i * pri[j] < A;
j++) {
vis[i * pri[j]] = 1;
if (i % pri[j] == 0) break;
}
}
}ull fast_pow(ull n, int m){
ull res = 1;
while(m){
if (m&1) res *= n;
n = n * n;
m >>= 1;
}
return res;
}ull Fun1(int p, int r){
return fast_pow(p, 2*r);
}ull Fun2(ull p, ull r){
if (r == 0) return 1;
ull now = fast_pow(p, r - 1);
return (now*p*(r+1) - r*now);
}ull calc(int n){
ull res1 = 1, res2 = 1;
for (int i = 1;
i <= tot && pri[i] * pri[i] <= n;
i++) {
if (n % pri[i] == 0) {
int cnt = 0;
while (n % pri[i] == 0) {
n /= pri[i];
cnt++;
}
ull tem1 = 0, tem2 = 0;
for (int j = 0;
j <= cnt;
j++) {
tem1 += Fun1(pri[i], j);
tem2 += Fun2(pri[i], j);
}
res1 *= tem1;
res2 *= tem2;
}
}
if (n > 1) {
res1 *= Fun1(n, 0) + Fun1(n, 1);
res2 *= Fun2(n, 0) + Fun2(n, 1);
}
return (res1 - res2);
}int main(){
Init();
ios::sync_with_stdio(false);
cin.tie(0);
int T;
cin >> T;
while (T--) {
int n;
cin >> n;
cout << calc(n) << endl;
}
return 0;
}
推荐阅读
- HDU 5528【2015长春现场赛 B】 Count a * b
- hdu|2016 Multi-University Training Contest 1 C Game(hdu 5725)
- 类欧几里得算法|[类欧几里得算法 数论] BZOJ 2987 Earthquake
- [数论] Codeforces 819D R #421 D.Mister B and Astronomers & 516E R #292 E. Drazil and His Happy Friends
- 模板 poj2947 Widget Factory 高斯消元
- 【扩展欧几里得】练习题
- 扩展欧几里得【数论
- 数论|hdu 5322 Hope(分治+NTT)
- HDU 5528 Count a × b
- HDU|HDU 1576 A/B(拓展欧几里得,模板题)