ACM模版
描述
文章图片
题解 【数论|51Nod-1227-平均最小公倍数】默比乌斯反演 + 杜教筛 + 分块 + 欧拉函数!!!这个套路的题51Nod上真多……
HOWARLI’s blog 可供详细参考!!!这几道套路题大佬差不多都写了,我就是看看大佬的题解拓展拓展眼界~~~
代码
#include
#include using namespace std;
typedef long long ll;
const int MAXN = 4e6;
const int MOD = 1e9 + 7;
const int MAXM = 3e5;
const int INV_2 = 5e8 + 4;
const int INV_6 = 166666668;
int n, m;
bool prz[MAXN + 10];
int pri[MAXN >> 1];
int phi[MAXN + 10];
int hx[MAXM][2];
int HX(int q)
{
int tmp = q % MAXM;
while (hx[tmp][0] && hx[tmp][0] != q)
{
tmp = (tmp + 1) % MAXM;
}return tmp;
}ll SM(ll s, ll t)
{
return (s + t) * (t - s + 1) % MOD * INV_2 % MOD;
}ll Gphi(int q)
{
if (q <= MAXN)
{
return phi[q];
}int t = HX(q);
if (hx[t][0])
{
return hx[t][1];
}hx[t][0] = q;
ll ans = 0;
for (int i = 2, nx;
i <= q;
i = nx + 1)
{
nx = q / (q / i);
ans = (ans + SM(i, nx) * Gphi(q / i) % MOD) % MOD;
}
q %= MOD;
return hx[t][1] = (int)((ll)q * (q + 1) % MOD * (2 * q + 1) % MOD * INV_6 % MOD - ans);
}ll Gans(int n)
{
int ans = n % MOD;
for (int i = 2, nx;
i <= n;
i = nx + 1)
{
nx = n / (n / i);
ans = (ans + (ll)(n / i) * (Gphi(nx) - Gphi(i - 1)) % MOD * INV_2 % MOD) % MOD;
}return ans;
}void init()
{
phi[1] = 1;
for (int i = 2;
i <= MAXN;
i++)
{
if (!prz[i])
{
pri[++pri[0]] = i;
phi[i] = i - 1;
}
for (int j = 1;
j <= pri[0];
j++)
{
int t = pri[j] * i;
if (t > MAXN)
{
break;
}
prz[t] = 1;
phi[t] = phi[i] * pri[j];
if (i % pri[j] == 0)
{
break;
}
phi[t] = phi[i] * (pri[j] - 1);
}
}for (int i = 2;
i <= MAXN;
i++)
{
phi[i] = ((ll)phi[i] * ((ll)i) % MOD + phi[i - 1]) % MOD;
}
}int main()
{
init();
scanf("%d%d", &m, &n);
printf("%lld\n", (Gans(n) - Gans(m - 1) + MOD) % MOD);
return 0;
}
推荐阅读
- HDU 5528【2015长春现场赛 B】 Count a * b
- 类欧几里得算法|[类欧几里得算法 数论] BZOJ 2987 Earthquake
- [数论] Codeforces 819D R #421 D.Mister B and Astronomers & 516E R #292 E. Drazil and His Happy Friends
- 模板 poj2947 Widget Factory 高斯消元
- 【扩展欧几里得】练习题
- 扩展欧几里得【数论
- 数论|hdu 5322 Hope(分治+NTT)
- HDU 5528 Count a × b
- 线性同余方程组
- 数论|AtCoder Beginner Contest 156 C.Rally