C|大端模式 小端模式

大端模式,是指数据的低位(就是权值较小的后面那几位)保存在内存的高地址中,而数据的高位保存在内存的低地址中,这样的存储模式有点儿类似于把数据当作字符串顺序处理:地址由小向大增加,而数据从高位往低位放;
小端模式,是指数据的低位保存在内存的低地址中,而数据的高位保存在内存的高地址中,这种存储模式将地址的高低和数据位权有效地结合起来,高地址部分权值高,低地址部分权值低,和我们的逻辑方法一致。
为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为 8bit。但是在C语言中除了8bit的char之外,还有16bit的short型,32bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如果将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。例如一个16bit的short型x,在内存中的地址为0x0010,x的值为0x1122,那么0x11为高字节,0x22为低字节。对于大端模式,就将0x11放在低地址中,即0x0010中,0x22放在高地址中,即0x0011中。小端模式,刚好相反。我们常用的X86结构是小端模 式,而KEIL C51则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。
下面这段代码可以用来测试一下你的编译器是大端模式还是小端模式:
short int x;
char x0,x1;
x=0x1122;
x0=((char*)&x)[0]; //低地址单元
x1=((char*)&x)[1]; //高地址单元
若x0=0x11,则是大端; 若x0=0x22,则是小端......上面的程序还可以看出,数据寻址时,用的是低位字节的地址。

----------------------------------------------------------
C语言面试题

试题1:请写一个C函数,若处理器是Big_endian的,则返回0;若是Little_endian的,则返回1
解答:
int checkCPU( )
{
{
union w
{
inta;
char b;
} c;
c.a = 1;
return(c.b ==1);
}
}
剖析:
嵌入式系统开发者应该对Little-endian和Big-endian模式非常了解。采用Little-endian模式的CPU对操作数的存放方式是从低字节到高字节,而Big-endian模式对操作数的存放方式是从高字节到低字节。例如,16bit宽的数0x1234在Little-endian模式CPU内存中的存放方式(假设从地址0x4000开始存放)为:

内存地址
0x4000
0x4001
存放内容
0x34
0x12
而在Big-endian模式CPU内存中的存放方式则为:
内存地址
0x4000
0x4001
存放内容
0x12
0x34
32bit宽的数0x12345678在Little-endian模式CPU内存中的存放方式(假设从地址0x4000开始存放)为:
内存地址
0x4000
0x4001
0x4002
0x4003
存放内容
0x78
0x56
0x34
0x12
而在Big-endian模式CPU内存中的存放方式则为:
内存地址
0x4000
0x4001
0x4002
0x4003
存放内容
0x12
0x34
0x56
0x78
联合体union的存放顺序是所有成员都从低地址开始存放,面试者的解答利用该特性,轻松地获得了CPU对内存采用Little-endian还是Big-endian模式读写。如果谁能当场给出这个解答,那简直就是一个天才的程序员。

2.
char str[] = “Hello” ;
char *p = str ;
int n = 10;
请计算
sizeof (str ) = 6
sizeof ( p ) = 4
sizeof ( n ) = 4
void Func ( char str[100])
{
请计算
sizeof( str ) = 4
【C|大端模式 小端模式】}
void *p = malloc( 100 );
请计算
sizeof ( p ) = 4
自己在TC中实际测试: char str[100] = {'1','2','3','4','5','6',}; printf("sizeof(str)=%d/n",sizeof(str)); ==》》100 printf("sizeof(str[100])=%d/n",sizeof(str[100])); ==》》1 void Func(char str[100]) { printf("sizeof(str)=%d/n",sizeof(str)); ==》》2【与编译器有关】 printf("sizeof(str[100])=%d/n",sizeof(str[100])); ==》》1 } main(int argc,char *argv[]) { char str[100] = {'1','2','3','4','5','6',}; Func(str); }
3、在C++程序中调用被 C编译器编译后的函数,为什么要加 extern “C”? (5分)
答:C++语言支持函数重载,C语言不支持函数重载。函数被C++编译后在库中的名字与C语言的不同。假设某个函数的原型为: void foo(int x, int y); 该函数被C编译器编译后在库中的名字为_foo,而C++编译器则会产生像_foo_int_int之类的名字。C++提供了C连接交换指定符号extern“C”来解决名字匹配问题。


4.有关内存的思考题
void GetMemory(char *p)
{
p = (char *)malloc(100);
}
void Test(void)
{
char *str = NULL;
GetMemory(str);
strcpy(str, "hello world");
printf(str);
}
请问运行Test函数会有什么样的结果?

答:程序崩溃。因为GetMemory并不能传递动态内存,Test函数中的 str一直都是 NULL。
strcpy(str, "hello world"); 将使程序崩溃。
char *GetMemory(void)
{
char p[] = "hello world";
return p;
}
void Test(void)
{
char *str = NULL;
str = GetMemory();
printf(str);
}
请问运行Test函数会有什么样的结果?


答:可能是乱码。因为GetMemory返回的是指向“栈内存”的指针,该指针的地址不是NULL,但其原先的内容已经被清除,新内容不可知。

void GetMemory2(char **p, int num)
{
*p = (char *)malloc(num);
}
void Test(void)
{
char *str = NULL;
GetMemory(&str, 100);
strcpy(str, "hello");
printf(str);
}
请问运行Test函数会有什么样的结果?

答:
(1)能够输出hello
(2)内存泄漏

void Test(void)
{
char *str = (char *) malloc(100);
strcpy(str, “hello”);
free(str);
if(str != NULL)
{
strcpy(str, “world”);
printf(str);
}
}
请问运行Test函数会有什么样的结果?

答:篡改动态内存区的内容,后果难以预料,非常危险。因为free(str); 之后,str成为野指针,if(str != NULL)语句不起作用。

    推荐阅读