信号|靠WiFi信号就能检测呼吸跌倒!北大这项硬科技研究越来越藏不住了( 二 )


信号|靠WiFi信号就能检测呼吸跌倒!北大这项硬科技研究越来越藏不住了
文章插图

在新加坡国立大学和资讯通讯研究院(I2R)工作几年后,他在新加坡开拓了普适计算这一研究方向并在2003年创立智慧家居实验室,在2004年成立情境感知系统研究部并担任创始部长,期间提出了目前仍被国际普适计算、移动计算和服务计算领域广为采用的基于本体的情境模型。也是从2003年起,他开始担任西北工业大学客座教授致力于为国内培养普适计算的青年人才。2007年开始,张大庆受邀成为法国巴黎国立电信学院一级终身教授,创建ALPS(Ambient Intelligence and Pervasive System Group)实验室。无论是在新加坡的I2R, 还是在法国的ALPS实验室,他和国内的高校如西工大、清华、北大、浙大、华中科大一起合作,培养了一大批国内在普适计算、群智感知和大数据分析等领域的青年才俊, 其中不少已成为这一领域国内的中青年领军人才。除此之外,他培养的一些国外的学者,如今在美国、澳大利亚的知名高校、企业担任教授、研究主管工作。
信号|靠WiFi信号就能检测呼吸跌倒!北大这项硬科技研究越来越藏不住了
文章插图

△张大庆和学生在ALPS2014年,张大庆正式加入北大,成为信息科学技术学院的讲席教授;很快又担任中国计算机学会普适计算专委的副主任、主任。他通过组织普适计算夏令营、前沿论坛和讲习班,每年邀请国际、国内著名学者一起推进国内普适计算的研究。2016年起, 国内学者在普适计算A类会议ACM UbiComp发表的论文数量开始位居国际第二(仅次于美国),张大庆教授的团队也保持着在UbiComp发表文章数量国际领先、引用数每年位居前三的记录。如今,张大庆在Google学术上的论文引用次数达到21000+,H因子72,他也是普适计算顶刊IEEE Pervasive Computing唯一的国内编委,和ACM IMWUT会刊7位国际指导委员会委员之一。他也曾获得过中国计算机学会(CCF)推荐的全部4个普适计算国际顶会的最佳论文或提名奖,包括ACM UbiComp 2015、2016的最佳论文提名奖,和IEEE PERCOM、IEEE UIC的“十年最具影响力论文奖”。今年9月的ACM UbiComp 2021上,张大庆团队的「Exploring LoRa for Long-range Through-wall Sensing」论文,再次获得了杰出论文奖。
信号|靠WiFi信号就能检测呼吸跌倒!北大这项硬科技研究越来越藏不住了
文章插图

从2000年起至今,已有20余年时间,张大庆一直没有停下研究的脚步,这也与他选择普适计算的初心有关。其一,普适计算属于应用(场景)驱动型研究:我们做普适计算研究时,首先都要选一个场景,就像“老人健康监测”这个应用场景,它并不限制技术实现的方式,用可穿戴、无线设备、摄像头都可以做,目标是把性能做到极致,这让我们的研究方式很灵活。我很喜欢参加普适计算会议,因为每次都能看到国际同行们展示最新、很酷的应用,都是我们日常都能遇到的场景,能切实感受到这些研究是有用的。其二,普适计算属于交叉学科,“永远在路上”:普适计算的研究没有“固定套路”。你可以利用最先进的感知技术、也可以研究通讯和AI算法,只要它对你解决具体的应用有帮助,你都可以探索,这也是我现在还在不断学习新知识的原因。这两点,在张大庆所做的研究中都得到了完美的印证。以2016年发表在UbiComp的无线感知论文为例,张大庆等人将源于光学的菲涅尔区模型引入到无线感知领域,揭示了用WiFi信号何时能检测人的呼吸的机理。理论上,WiFi作为一种电磁波信号,是可以用来反映物体活动情况的。但相关研究大都没有建立WiFi信号变化与设备位置、人体活动位置、方向、速度之间的定量关系,因此WiFi感知应用遇到问题时,人们不能从原理上理解为什么。菲涅尔区,是源自光学理论中的一个概念,指以收发信号的设备(这项研究中指WiFi信号发射和接收器)两点为焦点的一系列同心椭圆。乍一看,WiFi信号似乎和光学并不相关,但如果仔细一想,就会发现WiFi信号属于电磁波,广义上性质与光波相似。

推荐阅读