python中文相似度计算_doc2vec计算文本相似度--python实现
Boblee人工智能硕士毕业,擅长及爱好python,基于python研究人工智能、群体智能、区块链等技术,并使用python开发前后端、爬虫等。
1.背景
doc2vec的目标是创建文档的向量化表示,而不管其长度如何。但与单词不同的是,文档并没有单词之间的逻辑结构,因此必须找到另一种方法。
Mikilov和Le使用的概念很简单但很聪明:他们使用了word2vec模型,并添加了另一个向量(下面的段落ID),如下所示:
文章图片
上图是word2vec中CBOW模型的一个小扩展。它不是仅是使用一些单词来预测下一个单词,我们还添加了另一个特征向量,即文档Id。
因此,当训练单词向量W时,也训练文档向量D,并且在训练结束时,它包含了文档的向量化表示。
上面的模型称为段落向量的分布式记忆的版本(PV-DM)。它充当记忆器,它能记住当前上下文中缺少的内容 - 或者段落的主题。虽然单词向量表示单词的概念,但文档向量旨在表示文档的概念。
如在doc2vec中,另一种类似于skip-gram的算法,段落向量的分布式词袋版本(PV-DBOW)。
文章图片
该算法实际上更快(与word2vec相反)并且消耗更少的内存,因为不需要保存词向量。
在论文中,作者建议使用两种算法的组合,尽管PV-DM模型是优越的,并且通常会自己达到最优的结果。
doc2vec模型的使用方式:对于训练,它需要一组文档。为每个单词生成词向量W,并为每个文档生成文档向量D. 该模型还训练softmax隐藏层的权重。在推理阶段,可以呈现新文档,并且固定所有权重以计算文档向量。
2.python实现
本文使用今日头条提供的文本分类数据集进行实验,https://github.com/skdjfla/toutiao-text-classfication-dataset。
文章图片
python中提供了doc2vec、word2vec封装好的库sklearn。sklearn使用doc2vec请见https://radimrehurek.com/gensim/models/doc2vec.html。
pip install sklearn
1.句子分词
import gensimimport numpy as npimport jiebafrom gensim.models.doc2vec import Doc2Vecdef jieba_tokenize(text):"""文本分词:param text: 文本:return: 分词list"""return jieba.lcut(text)
2.获取训练集
def get_datasest():"""获取doc2vec文本训练数据集:return: 文本分词list,及id"""TaggededDocument = gensim.models.doc2vec.TaggedDocumentx_train = []for file in open('toutiao_cat_data.txt', encoding='utf8'):file = file.split('_!_')if len(file) > 3:document = TaggededDocument(file[3], tags=[int(file[1])])x_train.append(document)return x_train
3.训练
def train(x_train, size=2000, epoch_num=10):model_dm = Doc2Vec(x_train,min_count=1, window = 3, size = size, sample=1e-3, negative=5, workers=4)model_dm.train(x_train, total_examples=model_dm.corpus_count, epochs=epoch_num)model_dm.save('model')return model_dm
4.测试
def getVecs(model, corpus, size):vecs = [np.array(model.docvecs[z.tags[0]].reshape(1, size)) for z in corpus]return np.concatenate(vecs)def test():model_dm = Doc2Vec.load("model")test_text = ['想换个', '30', '万左右', '的', '车', ',', '现在', '开科鲁兹', ',', '有', '什么', '好', '推荐', '的', '?']inferred_vector_dm = model_dm.infer_vector(test_text)sims = model_dm.docvecs.most_similar([inferred_vector_dm], topn=10)return simsif __name__ == '__main__':x_train = get_datasest()model_dm = train(x_train)sims = test()for count, sim in sims:sentence = x_train[count]words = ''for word in sentence[0]:words = words + word + ' 'print (words, sim, len(sentence[0]))
文章图片
【python中文相似度计算_doc2vec计算文本相似度--python实现】感觉效果还是不错。对应车的句子能够提取出来。
推荐阅读
- python调用opencv例子_Opencv调用深度学习模型
- python对数函数图像及性质_[Python图像处理] 十六.图像的灰度非线性变换之对数变换、伽马变换...
- python word2vector计算相似度_使用word2vec计算词向量之间的相似度
- 使用opencv和python实现图像的智能处理_机器学习(使用OpenCV和Python进行智能图像处理...)
- python|Yolo4-Tiny代码解读
- 使用python实现深度神经网络|使用python实现深度神经网络 1
- Python从零到壹|[Python从零到壹] 四十三.图像增强及运算篇之图像点运算和图像灰度化处理
- Python|Python 中 selenium 库
- pyqt5|python 浏览器 PyQt5
- pyqt5|python PyQt5 数据库 表格动态增删改