复习|基于逻辑回归的信用卡欺诈检测

本文是我学习唐宇迪老师的课程做的整理,仅供自己复习。

目录

  • (一)导入需要使用的包
  • (二)读取数据
  • (三)数据预处理
  • (四)处理类别不平衡问题
    • 欠采样
  • (五)模型训练
    • 1.划分训练集和测试集
    • 2.利用逻辑回归进行模型训练
    • 3.画混淆矩阵(confusion matrix)
    • 4.过采样(SMOTE)

(一)导入需要使用的包
import pandas as pd import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.model_selection import KFold, cross_val_score#交叉验证 from sklearn.metrics import confusion_matrix,recall_score,classification_report #混淆矩阵,召回率%matplotlib inline

(二)读取数据 数据来源:kaggle
data = https://www.it610.com/article/pd.read_csv("E:\\AAAAAAAAA\\逻辑回归信用卡欺诈检测\\creditcard.csv",engine='python') data.head()

【复习|基于逻辑回归的信用卡欺诈检测】复习|基于逻辑回归的信用卡欺诈检测
文章图片

由于数据涉及隐私,因此每一列的名称没有给出,数据集包含31列,284807个数据,最后一列Class表示类别,0表示正常,1表示欺诈。
(收集数据的方法:
  1. 官方网站:kaggle数据集、亚马逊数据集、UCI机器学习数据库、谷歌数据集等
  2. 爬虫)
(三)数据预处理 对Amount列进行归一化处理,reshape(-1,1)表示将Amount变成1列,-1表示行数未知;然后去掉‘Time’列和‘Amount’列
from sklearn.preprocessing import StandardScalerdata['normAmount'] = StandardScaler().fit_transform(data['Amount'].reshape(-1, 1))#列数等于1,行数未知 data = https://www.it610.com/article/data.drop(['Time','Amount'],axis=1) data.head()

复习|基于逻辑回归的信用卡欺诈检测
文章图片

(四)处理类别不平衡问题 信用卡欺诈毕竟是少数,推断样本可能存在类别不平衡的情况,下面做条状图观察类别的分布情况
count_classes = pd.value_counts(data['Class'], sort = True).sort_index() count_classes.plot(kind = 'bar') plt.title("Fraud class histogram") plt.xlabel("Class") plt.ylabel("Frequency")

复习|基于逻辑回归的信用卡欺诈检测
文章图片

由条状图可以看出,的确存在类别不平衡的情况。类别不平衡的问题通常可以使用欠采样和过采样的方法加以解决。
为什么类别不平衡会影响模型输出?
许多模型的输出类别是基于阈值的,例如逻辑回归中小于0.5的为反例,大于0.5的为正例。在数据类别不平衡时,默认阈值会导致模型输出倾向于类别数据多的类别.
类别不平衡的解决方法:
1)调整阈值,使得模型倾向于类别少的数据;(效果不好)
2)选择合适的评估标准,如ROC曲线或F1值,而不是准确率;
3)欠采样:二分类问题中,假设正例比反例多很多,那么去掉一些正例使得正负比例平衡; (容易出现过拟合问题,泛化能力不强)
4)过采样:二分类问题中,假设正例比反例多很多,那么增加一些负例(重复负例的数据)使得正负比例平衡(容易出现过拟合问题)
对过采样的改进:SMOTE算法(数据生成策略)
复习|基于逻辑回归的信用卡欺诈检测
文章图片

欠采样
X = data.ix[:, data.columns != 'Class']#样本特征集 y = data.ix[:, data.columns == 'Class']#样本特征标签# Number of data points in the minority class(欺诈) number_records_fraud = len(data[data.Class == 1]) fraud_indices = np.array(data[data.Class == 1].index)# Picking the indices of the normal classes(正常) normal_indices = data[data.Class == 0].index# Out of the indices we picked, randomly select "x" number (number_records_fraud) random_normal_indices = np.random.choice(normal_indices, number_records_fraud, replace = False) #随机取number_records_fraud个正常数据 random_normal_indices = np.array(random_normal_indices)# Appending the 2 indices(合并正常数据和欺诈数据) under_sample_indices = np.concatenate([fraud_indices,random_normal_indices])# Under sample dataset(欠采样数据集) under_sample_data = https://www.it610.com/article/data.iloc[under_sample_indices,:]X_undersample = under_sample_data.ix[:, under_sample_data.columns !='Class']#欠采样数据集 y_undersample = under_sample_data.ix[:, under_sample_data.columns == 'Class']#欠采样数据标签 # Showing ratio print("Percentage of normal transactions: ", len(under_sample_data[under_sample_data.Class == 0])/len(under_sample_data)) print("Percentage of fraud transactions: ", len(under_sample_data[under_sample_data.Class == 1])/len(under_sample_data)) print("Total number of transactions in resampled data: ", len(under_sample_data))

复习|基于逻辑回归的信用卡欺诈检测
文章图片

可以看到,数据类别已经达到平衡了。
(五)模型训练 1.划分训练集和测试集
from sklearn.model_selection import train_test_split# Whole dataset(全集) X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3, random_state = 0)#random_state = 0保证训练集和测试集不变 #X:被划分的样本特征集,y:被划分的样本特征标签 print("Number transactions train dataset: ", len(X_train)) print("Number transactions test dataset: ", len(X_test)) print("Total number of transactions: ", len(X_train)+len(X_test))# Undersampled dataset(欠采样数据集) X_train_undersample, X_test_undersample, y_train_undersample, y_test_undersample = train_test_split(X_undersample ,y_undersample ,test_size = 0.3 ,random_state = 0) print("") print("Number transactions train dataset: ", len(X_train_undersample)) print("Number transactions test dataset: ", len(X_test_undersample)) print("Total number of transactions: ", len(X_train_undersample)+len(X_test_undersample))

复习|基于逻辑回归的信用卡欺诈检测
文章图片

2.利用逻辑回归进行模型训练 逻辑回归中有一个重要的参数—正则化项前面的系数C,我们定义一个函数对取不同C值的训练数据集进行5折交叉验证,找到使得召回率最高的C值进行逻辑回归。
召回率(查全率)=TP/(TP+FN)
精度(查准率)=TP/(TP+FP)
def printing_Kfold_scores(x_train_data,y_train_data): fold = KFold(5,shuffle=False) # Different C parameters c_param_range = [0.01,0.1,1,10,100]#正则化项前面的系数results_table = pd.DataFrame(index = range(len(c_param_range),2), columns = ['C_parameter','Mean recall score']) results_table['C_parameter'] = c_param_range# the k-fold will give 2 lists: train_indices = indices[0], test_indices = indices[1] j = 0 for c_param in c_param_range: print('-------------------------------------------') print('C parameter: ', c_param) print('-------------------------------------------') print('')recall_accs = [] for iteration, indices in enumerate(fold.split(x_train_data):# Call the logistic regression model with a certain C parameter lr = LogisticRegression(C = c_param, penalty = 'l1')# Use the training data to fit the model. In this case, we use the portion of the fold to train the model # with indices[0]. We then predict on the portion assigned as the 'test cross validation' with indices[1] lr.fit(x_train_data.iloc[indices[0],:],y_train_data.iloc[indices[0],:].values.ravel())# Predict values using the test indices in the training data y_pred_undersample = lr.predict(x_train_data.iloc[indices[1],:].values)# Calculate the recall score and append it to a list for recall scores representing the current c_parameter recall_acc = recall_score(y_train_data.iloc[indices[1],:].values,y_pred_undersample) recall_accs.append(recall_acc) print('Iteration ', iteration,': recall score = ', recall_acc)# The mean value of those recall scores is the metric we want to save and get hold of. results_table.ix[j,'Mean recall score'] = np.mean(recall_accs) j += 1 print('') print('Mean recall score ', np.mean(recall_accs)) print('') results_table['Mean recall score']=results_table['Mean recall score'].astype('float64') best_c = results_table.loc[results_table['Mean recall score'].idxmax()]['C_parameter']# Finally, we can check which C parameter is the best amongst the chosen. print('*********************************************************************************') print('Best model to choose from cross validation is with C parameter = ', best_c) print('*********************************************************************************')return best_c

best_c = printing_Kfold_scores(X_train_undersample,y_train_undersample)

复习|基于逻辑回归的信用卡欺诈检测
文章图片

复习|基于逻辑回归的信用卡欺诈检测
文章图片

得到C值为0.01时召回率最大
3.画混淆矩阵(confusion matrix)
def plot_confusion_matrix(cm, classes, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. """ plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=0) plt.yticks(tick_marks, classes)thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black")plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label')

import itertools lr = LogisticRegression(C = best_c, penalty = 'l1') lr.fit(X_train_undersample,y_train_undersample.values.ravel()) y_pred_undersample = lr.predict(X_test_undersample.values)# Compute confusion matrix cnf_matrix = confusion_matrix(y_test_undersample,y_pred_undersample) np.set_printoptions(precision=2)print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))# Plot non-normalized confusion matrix class_names = [0,1] plt.figure() plot_confusion_matrix(cnf_matrix , classes=class_names , title='Confusion matrix') plt.show()

复习|基于逻辑回归的信用卡欺诈检测
文章图片

欠采样数据测试集的混淆矩阵
复习|基于逻辑回归的信用卡欺诈检测
文章图片

lr = LogisticRegression(C = best_c, penalty = 'l1') lr.fit(X_train_undersample,y_train_undersample.values.ravel()) y_pred = lr.predict(X_test.values)# Compute confusion matrix cnf_matrix = confusion_matrix(y_test,y_pred) np.set_printoptions(precision=2)print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))# Plot non-normalized confusion matrix class_names = [0,1] plt.figure() plot_confusion_matrix(cnf_matrix , classes=class_names , title='Confusion matrix') plt.show()

全部数据测试集的混淆矩阵
复习|基于逻辑回归的信用卡欺诈检测
文章图片

可以看到,召回率比较高,但是存在12570个原本是正常被五分为诈骗的,精度比较低。
上面都是基于欠采样数据训练集进行模型训练,下面基于全部数据进行训练。
基于全部数据集的训练
best_c = printing_Kfold_scores(X_train,y_train)

复习|基于逻辑回归的信用卡欺诈检测
文章图片

lr = LogisticRegression(C = best_c, penalty = 'l1') lr.fit(X_train,y_train.values.ravel()) y_pred_undersample = lr.predict(X_test.values)# Compute confusion matrix cnf_matrix = confusion_matrix(y_test,y_pred_undersample) np.set_printoptions(precision=2)print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))# Plot non-normalized confusion matrix class_names = [0,1] plt.figure() plot_confusion_matrix(cnf_matrix , classes=class_names , title='Confusion matrix') plt.show()

复习|基于逻辑回归的信用卡欺诈检测
文章图片

可以看到,在全部数据的测试集上,召回率只有0.619,比较低。由此可以看出欠采样方法确实存在一些问题。
不同分类阈值下的混淆矩阵
lr = LogisticRegression(C = 0.01, penalty = 'l1') lr.fit(X_train_undersample,y_train_undersample.values.ravel()) y_pred_undersample_proba = lr.predict_proba(X_test_undersample.values)thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]#0.1表示大于0.1预测为1,小于0.1预测为0,以此类推plt.figure(figsize=(10,10))j = 1 for i in thresholds: y_test_predictions_high_recall = y_pred_undersample_proba[:,1] > iplt.subplot(3,3,j) j += 1# Compute confusion matrix cnf_matrix = confusion_matrix(y_test_undersample,y_test_predictions_high_recall) np.set_printoptions(precision=2)print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))# Plot non-normalized confusion matrix class_names = [0,1] plot_confusion_matrix(cnf_matrix , classes=class_names , title='Threshold >= %s'%i)

复习|基于逻辑回归的信用卡欺诈检测
文章图片

复习|基于逻辑回归的信用卡欺诈检测
文章图片

4.过采样(SMOTE)
import pandas as pd from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split

credit_cards=pd.read_csv("E:\\AAAAAAAAA\\逻辑回归信用卡欺诈检测\\creditcard.csv",engine='python')columns=credit_cards.columns # The labels are in the last column ('Class'). Simply remove it to obtain features columns features_columns=columns.delete(len(columns)-1)features=credit_cards[features_columns] labels=credit_cards['Class']

features_train, features_test, labels_train, labels_test = train_test_split(features, labels, test_size=0.2, random_state=0)

oversampler=SMOTE(random_state=0) os_features,os_labels=oversampler.fit_sample(features_train,labels_train) len(os_labels[os_labels==1])#227454

os_features = pd.DataFrame(os_features) os_labels = pd.DataFrame(os_labels) best_c = printing_Kfold_scores(os_features,os_labels)

复习|基于逻辑回归的信用卡欺诈检测
文章图片

lr = LogisticRegression(C = best_c, penalty = 'l1') lr.fit(os_features,os_labels.values.ravel()) y_pred = lr.predict(features_test.values)# Compute confusion matrix cnf_matrix = confusion_matrix(labels_test,y_pred) np.set_printoptions(precision=2)print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))# Plot non-normalized confusion matrix class_names = [0,1] plt.figure() plot_confusion_matrix(cnf_matrix , classes=class_names , title='Confusion matrix') plt.show()

复习|基于逻辑回归的信用卡欺诈检测
文章图片

可以看到召回率要比欠采样小一些,但模型的精度变高了。过采样的整体效果更好。一般情况下采用过采样。

    推荐阅读