主要实现原理:首先通过爬虫获取灯谜的数据,灯谜数据来源于汉谜网,然后用保存为csv或者表格数据,并用用tk做界面进行展示。完整程序代码包请在文末地址下载,程序运行截图:
文章图片
从汉谜网爬取灯谜程序spider.py
# -*- coding:utf-8 -*-
# 更多Python源代码,请微信关注:Python代码大全
import requests
from lxml import etree
import pandas as pd
from bs4 import BeautifulSoup as bsclass Riddles(object):
def __init__(self):
self.df = pd.DataFrame(columns=['谜面', '谜底','提示'])def get_list(self, url):
r = requests.get(url)
self.parse_list(r.text)def parse_list(self, html):
s = etree.HTML(html)
items = s.xpath('/html/body/div[6]/div[1]/div/div[2]/ul/li')
for item in items:
detUrl = r'http://www.cmiyu.com' + item.xpath('a/@href')[0]
self.get_detail(detUrl)
self.save_data()def get_detail(self, url):
print(url)
r = requests.get(url)
r.encoding = 'gb2312'
soup = bs(r.text, 'lxml')
prompt = soup.find('div', class_='zy').text
h3s = soup.find('div', class_='md').find_all('h3')
ques = h3s[0].text
ans = h3s[1].text
self.df = self.df.append(pd.DataFrame.from_dict({'谜面': ques, '谜底': ans, '提示': prompt}, orient='index').T,
ignore_index=True)def save_data(self):
self.df.to_csv('new_data1.csv', index=False, mode='a')
self.df = pd.DataFrame(columns=['谜面', '谜底', '提示'])if __name__ == '__main__':
riddles = Riddles()
for i in range(20, 151):
print('page', str(i))
url = r'http://www.cmiyu.com/dmmy/my18' + str(i) + '.html'
print(url)
riddles.get_list(url)
主程序main.py
# 更多Python源代码,请微信关注:Python代码大全from tkinter import messagebox
from PIL import Image, ImageTk
import random
import csv
import tkinter as tkclass LanternRiddles(object):
def __init__(self):
self.root = tk.Tk()
self.root.title("猜灯谜软件-《Python代码大全》")
self.root.geometry("1200x500")
self.root.geometry("+100+150")
self.data = https://www.it610.com/article/[]
with open('new_data.csv', 'r') as f:
reader = csv.reader(f)
for row in reader:
self.data.append(row)
self.index = [i for i in range(len(self.data))]
random.shuffle(self.index)# 做成背景的装饰
pic1 = Image.open('pic/bg.jpg').resize((1200, 500))# 加载图片并调整大小至窗口大小
pic = ImageTk.PhotoImage(pic1)
render = tk.Label(self.root, image=pic, compound=tk.CENTER, justify=tk.LEFT)
render.place(x=0, y=0)# 标签 and 输入框
label = tk.Label(self.root, text='输入答案', font=('微软雅黑', 15), fg='black', bg="Magenta")
label.place(x=0, y=10, width=100, height=40)
self.entry = tk.Entry(self.root, font=('宋体', 15), width=15, bg="GhostWhite")
self.entry.place(x=110, y=10, width=150, height=40)# 设置输入框,输入答案
# 按钮
confirm_button = tk.Button(self.root, text='确认', font=('微软雅黑', 15), bg="LightGreen", command=self.check)
confirm_button.place(x=270, y=10, width=100, height=40)# 确定按钮quit_button = tk.Button(self.root, text='退出软件', font=('微软雅黑', 15), bg="LightGreen", command=self.quit)
quit_button.place(x=800, y=10, width=100, height=40)# 退出软件
start_button = tk.Button(self.root, text='开始答题', font=('微软雅黑', 15), bg="LightGreen", command=self.get_next)
start_button.place(x=0, y=80, width=100, height=40)# 更换题目
prompt_button = tk.Button(self.root, text='显示提示', font=('微软雅黑', 15), bg="LightGreen", command=self.show_prompt)
prompt_button.place(x=650, y=10, width=100, height=40)# 更换题目self.riddle = tk.Text(self.root, bg="OrangeRed", fg="dimgray",font=('微软雅黑', 15))
self.riddle.place(x=200, y=180, width=300, height=160)# 显示题目self.root.mainloop()def get_next(self):# 更换题目
self.riddle.delete('1.0', 'end')# 清空显示
index = random.choice(self.index)
self.index.remove(index)
self.question = self.data[index][0]
self.answer = self.data[index][1]
self.prompt = self.data[index][2]
self.riddle.insert(tk.END, self.question)def check(self):# 验证答案
reply = self.entry.get()
if reply in self.answer:
messagebox.showinfo('提示', '回答正确')
self.get_next()
self.entry.delete(0, tk.END)
else:
messagebox.showinfo('提示', '回答错误,请重试')
self.entry.delete(0, tk.END)def show_prompt(self):# 显示提示
messagebox.showinfo('提示', self.prompt)def quit(self):
self.root.destroy()if __name__ == '__main__':
LanternRiddles()
完整猜灯谜软件源代码:猜灯谜软件
【python|用Python写的猜灯谜软件源代码】更多Python源代码免费下载,请微信关注:Python代码大全
文章图片
推荐阅读
- 数据可视化|Python-Matplotlib可视化(6)——自定义坐标轴让统计图清晰易懂
- 硬泡|javascript 内置对象Math总结及其案例
- Java|Java SE --- 内部类
- javascript|自己用js做一个搜索栏,超级简单
- 实验|python实现knn分类算法和贝叶斯分类算法(数据集为UCI Iris和UCI Bank Marketing)
- Python|conda常用虚拟环境命令
- matlab|matlab报错索引超出数组范围
- sklearn|UCI Iris数据集K近邻方法建模预测鸢花种类
- 深度学习|基于pytorch用yolov5算法实现目标检测与分割