风场可视化(绘制轨迹)
引子
了解绘制粒子之后,接着去看如何绘制粒子轨迹。
- 源库:webgl-wind
- Origin
- My GitHub
- JavaScript WebGL 图片透明处理
- JavaScript WebGL 帧缓冲区对象
- 初始化时,增加了背景纹理 B 和屏幕纹理 S 。
- 创建每个粒子相关信息的数据时,存了两个纹理 T20 和 T21 中。
- 绘制时,先绘制背景纹理 B ,再根据纹理 T20 绘制所有粒子,接着绘制屏幕纹理 S,之后将屏幕纹理 S 作为下一帧的背景纹理 B 。
- 最后基于纹理 T21 绘制新的结果,生成新的状态纹理覆盖 T20 ,开始下一帧绘制。
纹理 新增纹理相关逻辑:
// 代码省略
resize() {
const gl = this.gl;
const emptyPixels = new Uint8Array(gl.canvas.width * gl.canvas.height * 4);
// screen textures to hold the drawn screen for the previous and the current frame
this.backgroundTexture = util.createTexture(gl, gl.NEAREST, emptyPixels, gl.canvas.width, gl.canvas.height);
this.screenTexture = util.createTexture(gl, gl.NEAREST, emptyPixels, gl.canvas.width, gl.canvas.height);
}
// 代码省略
初始化的背景纹理和屏幕纹理都是以 Canvas 的宽高作为标准,同样是以每个像素 4 个分量存储。
屏幕着色器程序 新增屏幕着色器程序对象,最终显示可见的内容就是这个对象负责绘制:
this.screenProgram = webglUtil.createProgram(gl, quadVert, screenFrag);
顶点数据
顶点相关逻辑:
// 代码省略
this.quadBuffer = util.createBuffer(gl, new Float32Array([0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1]));
// 代码省略
util.bindAttribute(gl, this.quadBuffer, program.a_pos, 2);
// 代码省略
gl.drawArrays(gl.TRIANGLES, 0, 6);
// 代码省略
这里可以看出以顶点数据按照二维解析,总共 6 个点,绘制的是一个矩形,为什坐标都是 0 和 1 ,接着看下面的着色器。
顶点着色器
新增顶点着色器和对应绑定的变量:
const quadVert = `
precision mediump float;
attribute vec2 a_pos;
varying vec2 v_tex_pos;
void main() {
v_tex_pos = a_pos;
gl_Position = vec4(1.0 - 2.0 * a_pos, 0, 1);
}
`;
// 代码省略
this.drawTexture(this.backgroundTexture, this.fadeOpacity);
// 代码省略
drawTexture(texture, opacity) {
// 代码省略
util.bindAttribute(gl, this.quadBuffer, program.a_pos, 2);
// 代码省略
gl.drawArrays(gl.TRIANGLES, 0, 6);
}
// 代码省略
从这些分散的逻辑中,找到着色器中的变量对应的实际值:
a_pos
:quadBuffer
中每个顶点二维数据。v_tex_pos
: 跟a_pos
的值一样,会在对应的片元着色器中使用。
gl_Position
的计算方式,结合前面说到的顶点坐标都是 0 和 1 ,发现计算结果的范围是 [-1.0, +1.0] ,在裁减空间范围内,就可以显示出来。片元着色器
片元着色器和对应绑定的变量:
const screenFrag = `
precision mediump float;
uniform sampler2D u_screen;
uniform float u_opacity;
varying vec2 v_tex_pos;
void main() {
vec4 color = texture2D(u_screen, 1.0 - v_tex_pos);
// a hack to guarantee opacity fade out even with a value close to 1.0
gl_FragColor = vec4(floor(255.0 * color * u_opacity) / 255.0);
}
`;
this.fadeOpacity = 0.996;
// 代码省略
drawTexture(texture, opacity) {
// 代码省略
gl.uniform1i(program.u_screen, 2);
gl.uniform1f(program.u_opacity, opacity);
gl.drawArrays(gl.TRIANGLES, 0, 6);
}
从这些分散的逻辑中,找到着色器中的变量对应的实际值:
u_screen
: 动态变化的纹理,需根据上下文判断 。u_opacity
: 透明度,需根据上下文判断。v_tex_pos
: 从顶点着色器传递过来,也就是quadBuffer
中的数据。
1.0 - v_tex_pos
的范围是 [0, 1] ,正好包含了整个纹理的范围。最终颜色乘以动态 u_opacity
的效果就是原文中所说“稍微变暗”的目的。更新着色器程序 新增更新着色器程序对象,是让粒子产生移动轨迹的关键:
this.updateProgram = webglUtil.createProgram(gl, quadVert, updateFrag);
顶点数据
与屏幕着色器程序的顶点数据公用一套。
顶点着色器
与屏幕着色器程序的顶点着色器公用一套。
片元着色器
针对更新的片元着色器和对应绑定的变量:
const updateFrag = `
precision highp float;
uniform sampler2D u_particles;
uniform sampler2D u_wind;
uniform vec2 u_wind_res;
uniform vec2 u_wind_min;
uniform vec2 u_wind_max;
varying vec2 v_tex_pos;
// wind speed lookup;
use manual bilinear filtering based on 4 adjacent pixels for smooth interpolation
vec2 lookup_wind(const vec2 uv) {
// return texture2D(u_wind, uv).rg;
// lower-res hardware filtering
vec2 px = 1.0 / u_wind_res;
vec2 vc = (floor(uv * u_wind_res)) * px;
vec2 f = fract(uv * u_wind_res);
vec2 tl = texture2D(u_wind, vc).rg;
vec2 tr = texture2D(u_wind, vc + vec2(px.x, 0)).rg;
vec2 bl = texture2D(u_wind, vc + vec2(0, px.y)).rg;
vec2 br = texture2D(u_wind, vc + px).rg;
return mix(mix(tl, tr, f.x), mix(bl, br, f.x), f.y);
}void main() {
vec4 color = texture2D(u_particles, v_tex_pos);
vec2 pos = vec2(
color.r / 255.0 + color.b,
color.g / 255.0 + color.a);
// decode particle position from pixel RGBAvec2 velocity = mix(u_wind_min, u_wind_max, lookup_wind(pos));
// take EPSG:4236 distortion into account for calculating where the particle moved
float distortion = cos(radians(pos.y * 180.0 - 90.0));
vec2 offset = vec2(velocity.x / distortion, -velocity.y) * 0.0001 * 0.25;
// update particle position, wrapping around the date line
pos = fract(1.0 + pos + offset);
// encode the new particle position back into RGBA
gl_FragColor = vec4(
fract(pos * 255.0),
floor(pos * 255.0) / 255.0);
}
`;
// 代码省略
setWind(windData) {
// 风场图片的源数据
this.windData = https://www.it610.com/article/windData;
}
// 代码省略
util.bindTexture(gl, this.windTexture, 0);
util.bindTexture(gl, this.particleStateTexture0, 1);
// 代码省略
this.updateParticles();
// 代码省略
updateParticles() {
// 代码省略
const program = this.updateProgram;
gl.useProgram(program.program);
util.bindAttribute(gl, this.quadBuffer, program.a_pos, 2);
gl.uniform1i(program.u_wind, 0);
// 风纹理
gl.uniform1i(program.u_particles, 1);
// 粒子纹理gl.uniform2f(program.u_wind_res, this.windData.width, this.windData.height);
gl.uniform2f(program.u_wind_min, this.windData.uMin, this.windData.vMin);
gl.uniform2f(program.u_wind_max, this.windData.uMax, this.windData.vMax);
gl.drawArrays(gl.TRIANGLES, 0, 6);
// 代码省略
}
从这些分散的逻辑中,找到着色器中的变量对应的实际值:
u_wind
:风场图片生成的纹理windTexture
。u_particles
:所有粒子颜色信息的纹理particleStateTexture0
。u_wind_res
: 生成图片的宽高。u_wind_min
: 风场数据分量最小值。u_wind_max
: 风场数据分量最大值。
quadBuffer
的顶点数据从纹理 particleStateTexture0
中获取对应位置的像素信息,用像素信息解码出粒子位置,通过 lookup_wind
方法获取相邻 4 个像素的平滑插值,之后基于风场最大值和最小值得出偏移量 offset
,最后得到新的位置转为颜色输出。在这个过程中发现下面几个重点:- 怎么获取相邻 4 个像素?
- 二维地图中,两极和赤道粒子如何区别?
vec2 lookup_wind(const vec2 uv) {
vec2 px = 1.0 / u_wind_res;
vec2 vc = (floor(uv * u_wind_res)) * px;
vec2 f = fract(uv * u_wind_res);
vec2 tl = texture2D(u_wind, vc).rg;
vec2 tr = texture2D(u_wind, vc + vec2(px.x, 0)).rg;
vec2 bl = texture2D(u_wind, vc + vec2(0, px.y)).rg;
vec2 br = texture2D(u_wind, vc + px).rg;
return mix(mix(tl, tr, f.x), mix(bl, br, f.x), f.y);
}
- 以生成图片的宽高作为基准,得到基本单位
px
; - 在新衡量标准下,向下取整得到近似位置
vc
作为第 1 个参考点,移动基本单位单个分量px.x
得到第 2 个参考点; - 移动基本单位单个分量
px.y
得到第 3 个参考点,移动基本单位px
得到第 4 个参考点。
在两极附近,粒子沿 X 轴的移动速度应该比赤道上的粒子快得多,因为相同的经度表示的距离要小得多。对应的处理逻辑:
float distortion = cos(radians(pos.y * 180.0 - 90.0));
vec2 offset = vec2(velocity.x / distortion, -velocity.y) * 0.0001 * u_speed_factor;
radians
方法将角度转换为弧度值,pos.y * 180.0 - 90.0
猜测是风数据转为角度的规则。cos
余弦值在 [0,π] 之间逐渐变小,对应 offset
的第一个分量就会逐渐变大,效果看起来速度变快了。第二个分量加上了符号 -
,推测是要跟图片纹理一致,图片纹理默认在 Y 轴上是反的。绘制 绘制这块变化很大:
draw() {
// 代码省略
this.drawScreen();
this.updateParticles();
}
drawScreen() {
const gl = this.gl;
// draw the screen into a temporary framebuffer to retain it as the background on the next frame
util.bindFramebuffer(gl, this.framebuffer, this.screenTexture);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
this.drawTexture(this.backgroundTexture, this.fadeOpacity);
this.drawParticles();
util.bindFramebuffer(gl, null);
// enable blending to support drawing on top of an existing background (e.g. a map)
gl.enable(gl.BLEND);
gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA);
this.drawTexture(this.screenTexture, 1.0);
gl.disable(gl.BLEND);
// save the current screen as the background for the next frame
const temp = this.backgroundTexture;
this.backgroundTexture = this.screenTexture;
this.screenTexture = temp;
}
drawTexture(texture, opacity) {
const gl = this.gl;
const program = this.screenProgram;
gl.useProgram(program.program);
// 代码省略
gl.drawArrays(gl.TRIANGLES, 0, 6);
}
drawParticles() {
const gl = this.gl;
const program = this.drawProgram;
gl.useProgram(program.program);
// 代码省略
gl.drawArrays(gl.POINTS, 0, this._numParticles);
}
updateParticles() {
const gl = this.gl;
util.bindFramebuffer(gl, this.framebuffer, this.particleStateTexture1);
gl.viewport(
0,
0,
this.particleStateResolution,
this.particleStateResolution
);
const program = this.updateProgram;
gl.useProgram(program.program);
// 代码省略
gl.drawArrays(gl.TRIANGLES, 0, 6);
// swap the particle state textures so the new one becomes the current one
const temp = this.particleStateTexture0;
this.particleStateTexture0 = this.particleStateTexture1;
this.particleStateTexture1 = temp;
}
- 先切换到帧缓冲区,指定的纹理是
screenTexture
,注意从这里开始绘制的结果是不可见的,接着绘制了整个背景纹理backgroundTexture
和基于纹理particleStateTexture0
的所有单个粒子,然后解除帧缓冲区绑定。这部分绘制结果会存储在纹理screenTexture
中。 - 切换到默认的颜色缓冲区,注意从这里开始绘制的结果可见,开启 α 混合,
blendFunc
设置的两个参数效果是重叠的部分后绘制会覆盖先绘制。然后绘制了整个纹理screenTexture
,也就是说帧缓冲区的绘制结果都显示到了画布上。 - 绘制完成后,使用了中间变量进行替换,纹理
backgroundTexture
变成了现在呈现的纹理内容,作为下一帧的背景。 - 接着切换到帧缓冲区更新粒子状态,指定的纹理是
particleStateTexture1
,注意从这里开始绘制的结果是不可见的,基于纹理particleStateTexture0
绘制产生偏移后的状态,整个绘制结果会储存在纹理particleStateTexture1
中。 - 绘制完成后,使用了中间变量进行替换,纹理
particleStateTexture0
变成了移动后的纹理内容,作为下一帧粒子呈现的依据。这样连续的帧绘制,看起来就是动态的效果。
偏移为什么要用 lookup_wind 里面的计算方式 ?
【风场可视化(绘制轨迹)】原文解释说找平滑插值,但这里面的数学原理是什么?找到之后为什么又要
mix
一次?个人也没找到比较好的解释。参考资料
- How I built a wind map with WebGL
推荐阅读
- Something|《Python深度学习》之卷积神经网络可视化
- 如何快速绘制任意角度的扇形()
- python|python turtle画动物_python turtle 海龟绘图,绘制小猪佩奇-Go语言中文社区
- Azure|Azure(什么是回归)
- 园区元宇宙(打造智慧园区综合治理可视化管理平台)
- Python+Turtle绘制航海王草帽路飞详解
- 用捷码实现智慧社区大屏可视化,引领管理新风向
- 数据可视化|基于ECharts数据可视化案例--世界疫情实时展示
- 数据可视化|数据可视化-监控大屏呈现和拓扑图绘制工具总结
- 前端开发|数据可视化大屏-Vue项目