NMS和几种IOU的复现
- 输入为一张图片以及图片经过Yolo v3的推理结果,下载链接,提取码ha4o。
- NMS的实现参考的yolo v3,在细节上做了一些优化
- 实现了iou,giou,diou,ciou的计算
文章图片
import cv2
import numpy as np
import random
import torch
import mathdef bbox_giou(box1, box2):
"""
Returns the GIoU of two bounding boxes
"""
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]inter_rect_x1 = torch.max(b1_x1, b2_x1)
inter_rect_x2 = torch.min(b1_x2, b2_x2)
inter_rect_y1 = torch.max(b1_y1, b2_y1)
inter_rect_y2 = torch.min(b1_y2, b2_y2)inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1 + 1, min=0) * \
torch.clamp(inter_rect_y2 - inter_rect_y1 + 1, min=0)outer_rect_x1 = torch.min(b1_x1, b2_x1)
outer_rect_x2 = torch.max(b1_x2, b2_x2)
outer_rect_y1 = torch.min(b1_y1, b2_y1)
outer_rect_y2 = torch.max(b1_y2, b2_y2)outer_area = (outer_rect_x2 - outer_rect_x1) * (outer_rect_y2 - outer_rect_y1)b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)iou = inter_area / (b1_area + b2_area - inter_area)giou = iou - (outer_area - (b1_area + b2_area - inter_area)) / outer_areareturn gioudef bbox_diou(box1, box2):
"""
Returns the DIoU of two bounding boxes
"""
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]inter_rect_x1 = torch.max(b1_x1, b2_x1)
inter_rect_x2 = torch.min(b1_x2, b2_x2)
inter_rect_y1 = torch.max(b1_y1, b2_y1)
inter_rect_y2 = torch.min(b1_y2, b2_y2)inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1 + 1, min=0) * \
torch.clamp(inter_rect_y2 - inter_rect_y1 + 1, min=0)b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)iou = inter_area / (b1_area + b2_area - inter_area)outer_rect_x1 = torch.min(b1_x1, b2_x1)
outer_rect_x2 = torch.max(b1_x2, b2_x2)
outer_rect_y1 = torch.min(b1_y1, b2_y1)
outer_rect_y2 = torch.max(b1_y2, b2_y2)d2 = ((b2_x1 + (b2_x2 - b2_x1)/2) - (b1_x1 + (b1_x2 - b1_x1)/2)).pow(2) + \
((b2_y1 + (b2_y2 - b2_y1)/2) - (b1_y1 + (b1_y2 - b1_y1)/2)).pow(2)
c2 = (outer_rect_y2 - outer_rect_y1).pow(2) + (outer_rect_x2 - outer_rect_x1).pow(2)diou = iou - d2 / c2return dioudef bbox_ciou(box1, box2):
"""
Returns the CIoU of two bounding boxes
"""
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]inter_rect_x1 = torch.max(b1_x1, b2_x1)
inter_rect_x2 = torch.min(b1_x2, b2_x2)
inter_rect_y1 = torch.max(b1_y1, b2_y1)
inter_rect_y2 = torch.min(b1_y2, b2_y2)inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1 + 1, min=0) * \
torch.clamp(inter_rect_y2 - inter_rect_y1 + 1, min=0)b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)iou = inter_area / (b1_area + b2_area - inter_area)outer_rect_x1 = torch.min(b1_x1, b2_x1)
outer_rect_x2 = torch.max(b1_x2, b2_x2)
outer_rect_y1 = torch.min(b1_y1, b2_y1)
outer_rect_y2 = torch.max(b1_y2, b2_y2)d2 = ((b2_x1 + (b2_x2 - b2_x1)/2) - (b1_x1 + (b1_x2 - b1_x1)/2)).pow(2) + \
((b2_y1 + (b2_y2 - b2_y1)/2) - (b1_y1 + (b1_y2 - b1_y1)/2)).pow(2)
c2 = (outer_rect_y2 - outer_rect_y1).pow(2) + (outer_rect_x2 - outer_rect_x1).pow(2)v = (4 / math.pi * math.pi) * \
(torch.atan((b1_x2 - b1_x1)/(b1_y2 - b1_y1)) - torch.atan((b2_x2 - b2_x1)/(b2_y2 - b2_y1))).pow(2)
alpha = v / (1 - iou + v)
ciou = iou - d2 / c2 - alpha * v
return cioudef bbox_iou(box1, box2):
"""
Returns the GIoU of two bounding boxes
"""
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]inter_rect_x1 = torch.max(b1_x1, b2_x1)
inter_rect_x2 = torch.min(b1_x2, b2_x2)
inter_rect_y1 = torch.max(b1_y1, b2_y1)
inter_rect_y2 = torch.min(b1_y2, b2_y2)inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1 + 1, min=0) * \
torch.clamp(inter_rect_y2 - inter_rect_y1 + 1, min=0)b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)iou = inter_area / (b1_area + b2_area - inter_area)return iouCLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',
'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',
'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop',
'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock',
'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush')def write(prediction, img):
for x in prediction:
cls = int(x[-1])
label = "{0}".format(CLASSES[cls])
c1 = tuple(list(map(int, x[1:3].tolist())))
c2 = tuple(list(map(int, x[3:5].tolist())))
r = random.randint(0, 255)
g = random.randint(0, 255)
b = random.randint(0, 255)
color = (b, g, r)
cv2.rectangle(img, c1, c2, color, 1)
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1, 1)[0]
c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4
cv2.rectangle(img, c1, c2, color, -1)
cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225, 255, 255], 1);
return imgdef unique(tensor):
tensor_np = tensor.cpu().numpy()
unique_np = np.unique(tensor_np)
unique_tensor = torch.from_numpy(unique_np)
tensor_res = tensor.new(unique_tensor.shape)
tensor_res.copy_(unique_tensor)
return tensor_resdef write_results(prediction, confidence, num_classes, nms_conf = 0.4):
# prediction (batch, point_num, 85) : center x y ,w h, confidence, cls scores
# Step 1. 筛选出置信度大于confidence的
conf_mask = (prediction[:, :, 4] > confidence).float().unsqueeze(2)
prediction = prediction * conf_mask
non_zero = prediction[:, :, 4] > 0
prediction = prediction[non_zero].unsqueeze(0)
# Step 2. 根据中心点坐标和wh算出左上角右下角坐标,这里需要注意左上角为坐标原点
bbox_corner = prediction.new(prediction.shape)
bbox_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2]/2
bbox_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3]/2
bbox_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2]/2
bbox_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3]/2
prediction[:, :, :4] = bbox_corner[:, :, :4]
# Step3. 分Batch进行NMS
write = False
batch_size = prediction.shape[0]
for i in range(batch_size):
img_pred = prediction[i]
max_cls_score, max_cls = torch.max(img_pred[:, 5:5 + num_classes], 1)
max_cls_score = max_cls_score.float().unsqueeze(1)
max_cls = max_cls.float().unsqueeze(1)
#img_pred (point_num, 7)角点坐标, 置信度, 分类分数, 类别
img_pred = torch.cat((img_pred[:, :5], max_cls_score, max_cls), 1)
img_classes = unique(img_pred[:, -1])
for cls in img_classes:
pos_index = img_pred[:, -1] == cls
img_pred_cls = img_pred[pos_index]
conf_sort_index = torch.sort(img_pred_cls[:, 4], descending=True)[1]
img_pred_cls = img_pred_cls[conf_sort_index]
index = 0
while index + 1 < img_pred_cls.shape[0]:
ious = bbox_ciou(img_pred_cls[index].unsqueeze(0), img_pred_cls[index + 1:])
iou_mask = (ious < nms_conf).float().unsqueeze(1)
img_pred_cls[index+1:] = img_pred_cls[index+1:] * iou_mask
# Remove the non-zero entries
non_zero_ind = torch.nonzero(img_pred_cls[:, 4]).squeeze()
img_pred_cls = img_pred_cls[non_zero_ind].view(-1, 7)
index += 1
batch_ind = img_pred_cls.new(img_pred_cls.size(0), 1).fill_(i)# Repeat the batch_id for as many detections of the class cls in the images
seq = batch_ind, img_pred_cls
if not write:
output = torch.cat(seq, 1)
write = True
else:
out = torch.cat(seq, 1)
output = torch.cat((output, out))return outputdef reshape_output(prediction_output):
radio = min(416/image.shape[0], 416/image.shape[1])
prediction_output[:, [1, 3]] -= (416 - radio * image.shape[1]) / 2
prediction_output[:, [1, 3]] /= radio
prediction_output[:, [2, 4]] -= (416 - radio * image.shape[0]) / 2
prediction_output[:, [2, 4]] /= radio
return prediction_outputif __name__ == '__main__':
image = cv2.imread('dog-cycle-car.png')
# prediction (b, point_num, 85) : center x y ,w h, confidence, cls scores
prediction = np.load('prediction.npy')
prediction = torch.from_numpy(prediction)
# (第几张,左上x,左上y,右下x,右下y,bbox置信度,目标种类得分,什么物体)
output = write_results(prediction, 0.5, num_classes=80, nms_conf=0.4)
output = reshape_output(output)
image = write(output, image)
cv2.imshow('image', image)
while 1:
cv2.waitKey(1)
推荐阅读
- 深度学习基础|深度学习基础-线性回归
- 机器学习|机器学习_pytorch_高级神经网络结构_AutoEncoder自编码
- python|总结|图像分割5大经典方法
- 目标检测|yolov5——断点训练/继续训练【解决方法、使用教程】
- 目标检测|yolov5——detect.py代码【注释、详解、使用教程】
- 计算机视觉|平均池化和最大池化分别适用于什么场景呢()
- stm32|C/C++ Qt 自定义Dialog对话框组件应用
- 业界观点|深度学习崛起十年(“开挂”的OpenAI革新者)
- 计算机视觉|斯坦福大学计算机视觉课程cs231n——第一课(课程介绍 计算机视觉概述)