10|10 分钟讲完 QUIC 协议。
建议阅读本文需要搭配作者 HTTP 相关文章食用。
历史 HTTP 系列文章:
看完这篇HTTP,跟面试官扯皮就没问题了
HTTP 2.0 ,有点炸 !
这里先来回顾一下 HTTP 的发展过程。首先,我们想要一种能够在网络上获取文档内容的协议,通过一种叫做 GET 请求的方式进行获取,后来这种 GET 请求被写入了官方文档,HTTP/1.0 应运而生。HTTP/1.0 的出现可以说是颠覆性的,它里面涵盖的一些标准我们目前还仍在使用,例如 HTTP header,协议号的概念,不过,这个版本的 HTTP 还有一些明显的缺陷,比如它不支持持久性连接,每次请求响应后,都需要断开连接,这样效率很差。没过了多久,制定了 HTTP/1.1 标准,这个标准是互联网上使用最频繁的一个标准,HTTP/1.1 解决了之前不支持持久性连接的缺陷,而且 HTTP/1.1 还增加了缓存和控制模块。
但是,即便 HTTP/1.1 解决了一部分连接性能问题,它的效率仍不是很高,而且 HTTP 还有一个队头阻塞问题(关于队头阻塞我已经在 HTTP2.0 的那篇文章中进行了说明和介绍。)
假如有五个请求被同时发出,如果第一个请求没有处理完成,就会导致后续的请求也无法得到处理,如下图所示
文章图片
如果第一个请求没有被处理,那么 2 3 4 5 这四个请求会直接阻塞在客户端,等到请求 1 被处理完毕后,才能逐个发出。网络通畅的时候性能影响不大,不过一旦请求 1 因为某些原因没有抵达服务器,或者请求因为网络阻塞没有及时返回,影响的就是所有后续请求,导致后续请求无限阻塞下去,问题就变得比较严重了。
虽然 HTTP/1.1 使用了 pipling 的设计用于解决队头阻塞问题,但是在 pipling 的设计中,每个请求还是按照顺序先发先回,并没有从根本上解决问题。随着协议的不断更新,提出了 HTTP/2.0 。
HTTP/2.0
HTTP/2.0 解决队头阻塞的问题是采用了 stream 和分帧的方式。
HTTP/2.0 会将一个 TCP 连接切分成为多个 stream,每个 stream 都有自己的 stream id,这个 stream 可以是客户端发往服务端,也可以是服务端发往客户端。
HTTP/2.0 还能够将要传输的信息拆分为帧,并对它们进行二进制格式编码。也就是说,HTTP/2.0 会将 Header 头和 Data 数据分别进行拆分,而且拆分之后的二进制格式位于多个 stream 中。下面来看张图。
文章图片
可以看到,HTTP/2.0 通过这两种机制,将多个请求分到了不同的 stream 中,然后将请求进行分帧,进行二进制传输,每个 stream 可以不用保证顺序乱序发送,到达客户端后,客户端会根据每个 stream 进行重组,而且可以根据优先级来优先处理哪个 stream。
QUIC 协议
虽然 HTTP/2.0 解决了队头阻塞问题,但是每个 HTTP 连接都是由 TCP 进行连接建立和传输的,TCP 协议在处理包时有严格的顺序要求。这也就是说,当某个包切分的 stream 由于某些原因丢失后,服务器不会处理其他 stream,而会优先等待客户端发送丢失的 stream 。举个例子来说,假如有一个请求有三个 stream,其中 stream2 由于某些原因丢失了,那么 stream1 和 stream 2 的处理也会阻塞,只有收到重发的 stream2 之后,服务器才会再次进行处理。
这就是 TCP 连接的症结所在。鉴于这个问题,我们先把 TCP 放一放,先来认识一波 QUIC 协议。
QUIC 的小写是 quic,谐音 quick,意思就是
快
。它是 Google 提出来的一个基于 UDP 的传输协议,所以 QUIC 又被叫做快速 UDP 互联网连接。首先 QUIC 的第一个特征就是快,为什么说它快,它到底快在哪呢?
我们大家知道,HTTP 协议在传输层是使用了 TCP 进行报文传输,而且 HTTPS 、HTTP/2.0 还采用了 TLS 协议进行加密,这样就会导致三次握手的连接延迟:即 TCP 三次握手(一次)和 TLS 握手(两次),如下图所示。
【10|10 分钟讲完 QUIC 协议。】
文章图片
对于很多短连接场景,这种握手延迟影响较大,而且无法消除。
相比之下,QUIC 的握手连接更快,因为它使用了 UDP 作为传输层协议,这样能够减少三次握手的时间延迟。而且 QUIC 的加密协议采用了 TLS 协议的最新版本 TLS 1.3,相对之前的 TLS 1.1-1.2,TLS1.3 允许客户端无需等待 TLS 握手完成就开始发送应用程序数据的操作,可以支持1 RTT 和 0 RTT,从而达到快速建立连接的效果。
我们上面还说过,HTTP/2.0 虽然解决了队头阻塞问题,但是其建立的连接还是基于 TCP,无法解决请求阻塞问题。
而 UDP 本身没有建立连接这个概念,并且 QUIC 使用的 stream 之间是相互隔离的,不会阻塞其他 stream 数据的处理,所以使用 UDP 并不会造成队头阻塞。
在 TCP 中,TCP 为了保证数据的可靠性,使用了序号+确认号机制来实现,一旦带有 synchronize sequence number 的包发送到服务器,服务器都会在一定时间内进行响应,如果过了这段时间没有响应,客户端就会重传这个包,直到服务器收到数据包并作出响应为止。
那么 TCP 是如何判断它的重传超时时间呢?TCP 一般采用的是自适应重传算法,这个超时时间会根据往返时间 RTT 动态调整的。每次客户端都会使用相同的 syn 来判断超时时间,导致这个 RTT 的结果计算的不太准确。
虽然 QUIC 没有使用 TCP 协议,但是它也保证了可靠性,QUIC 实现可靠性的机制是使用了 Packet Number,这个序列号可以认为是 synchronize sequence number 的替代者,这个序列号也是递增的。与 syn 所不同的是,不管服务器有没有接收到数据包,这个 Packet Number 都会 + 1,而 syn 是只有服务器发送 ack 响应之后,syn 才会 + 1。
文章图片
比如有一个 PN = 10 的数据包在发送的过程中由于某些原因迟迟没到服务器,那么客户端会重传一个 PN = 11 的数据包,经过一段时间后客户端收到 PN = 10 的响应后再回送响应报文,此时的 RTT 就是 PN = 10 这个数据包在网络中的生存时间,这样计算相对比较准确。
虽然 QUIC 保证了数据包的可靠性,但是数据的可靠性是如何保证的呢?QUIC 引入了一个 stream offset 的概念,一个 stream 可以传输多个 stream offset,每个 stream offset 其实就是一个 PN 标识的数据,即使某个 PN 标识的数据丢失,PN + 1 后,它重传的仍旧是 PN 所标识的数据,等到所有 PN 标识的数据发送到服务器,就会进行重组,以此来保证数据可靠性。到达服务器的 stream offset 会按照顺序进行组装,这同时也保证了数据的顺序性。
文章图片
众所周知,TCP 协议的具体实现是由操作系统内核来完成的,应用程序只能使用,不能对内核进行修改,随着移动端和越来越多的设备接入互联网,性能逐渐成为一个非常重要的衡量指标。虽然移动网络发展的非常快,但是用户端的更新却非常缓慢,我仍然看见有很多地区很多计算机还仍旧使用 xp 系统,尽管它早已发展了很多年。服务端系统不依赖用户升级,但是由于操作系统升级涉及到底层软件和运行库的更新,所以也比较保守和缓慢。
QUIC 协议的一个重要特点就是可插拔性,能够动态更新和升级,QUIC 在应用层实现了拥塞控制算法,不需要操作系统和内核的支持,遇到拥塞控制算法切换时,只需要在服务器重新加载一边即可,不需要停机和重启。
我们知道 TCP 的流量控制是通过滑动窗口来实现的,如果你对滑动窗口不太熟悉,你可以看下我写的这篇文章
TCP 基础知识
在文章后面有提到了滑动窗口的一些概念。
而 QUIC 也实现了流量控制,QUIC 的流量控制也是使用了窗口更新 window_update,来告诉对端它可以接受的字节数。
TCP 协议头部没有经过加密和认证,所以在传输的过程中很可能被篡改,与之不同的是,QUIC 中的报文头部都是经过认证,报文也经过加密处理。这样只要对 QUIC 的报文有任何修改,接收端都能够及时发现,保证了安全性。
总的来说,QUIC 相比于 HTTP/2.0 来说,具有下面这些优势
- 使用 UDP 协议,不需要三次连接进行握手,而且也会缩短 TLS 建立连接的时间。
- 解决了队头阻塞问题
- 实现动态可插拔,在应用层实现了拥塞控制算法,可以随时切换。
- 报文头和报文体分别进行认证和加密处理,保障安全性。
- 连接能够平滑迁移
QUIC 相关资料 QUIC 协议比较复杂,想自己完全实现一套对笔者来说还比较困难。
读者有兴趣的话可以先看看开源实现有哪些。
1)Chromium: https://github.com/hanpfei/chromium-net
这个是官方支持的。优点自然很多,Google 官方维护基本没有坑,随时可以跟随 chrome 更新到最新版本。不过编译 Chromium 比较麻烦,它有单独的一套编译工具。暂时不建议考虑这个方案。
2)proto-quic:https://github.com/google/proto-quic
从 chromium 剥离的一个 QUIC 协议部分,但是其 github 主页已宣布不再支持,仅作实验使用。不建议考虑这个方案。
3)goquic:https://github.com/devsisters/goquic
goquic 封装了 libquic 的 go 语言封装,而 libquic 也是从 chromium 剥离的,好几年不维护了,仅支持到 quic-36, goquic 提供一个反向代理,测试发现由于 QUIC 版本太低,最新 chrome 浏览器已无法支持。不建议考虑这个方案。
4)quic-go:https://github.com/lucas-clemente/quic-go
quic-go 是完全用 go 写的 QUIC 协议栈,开发很活跃,已在 Caddy 中使用,MIT 许可,目前看是比较好的方案。
那么,对于中小团队或个人开发者来说,比较推荐的方案是最后一个,即采用 caddy https://github.com/caddyserver/caddy/wiki/QUIC 来部署实现 QUIC。caddy 这个项目本意并不是专门用来实现 QUIC 的,它是用来实现一个免签的 HTTPS web 服务器的(caddy 会自动续签证书)。而QUIC 只是它的一个附属功能(不过现实是——好像用它来实现 QUIC 的人更多)。
从 Github 的技术趋势来说,有关 QUIC 的开源资源越来越多,有兴趣可以自已逐一研究研究:https://github.com/search?q=quic
原文链接:10 分钟讲完 QUIC 协议
推荐阅读
- 三分钟学习一下JavaScript中map对象的用法
- 5分钟NLP(HuggingFace|5分钟NLP:HuggingFace 内置数据集的使用教程)
- 程序员合集|【Pygame实战】如果你是赛车爱好者(这款新赛车游戏分分钟让你上瘾(超跑又是谁的梦想()))
- 三分钟学习一下JavaScript中set对象的用法
- xxl-job踩坑记录——执行器,执行10分钟自动失败
- JavaScript中一些不常见的运算符号(三分钟看完)
- MySQL|10分钟必懂-深入理解MySQL隔离级别与锁机制
- 发现了股票涨停之前的规律,让你提前至少10分钟知道
- 程序员|【Pygame实战】如果你是赛车爱好者(这款新赛车游戏分分钟让你上瘾(超跑又是谁的梦想()))
- 穷追猛打,阿里二面问了我30分钟从URL输入到渲染...