图解设计模式|<Java设计模式>(一)内容介绍 | 设计模式七大原则


文章目录

  • 第一章 内容介绍
    • 1.1 设计模式的重要性
  • 第二章 设计模式七大原则
    • 2.1 设计模式的目的
    • 2.2 设计模式七大原则
    • 2.3 单一职责原则
      • 2.3.1 基本介绍
      • 2.3.2 应用实例
      • 2.3.3 单一职责原则注意事项和细节
    • 2.4 接口隔离原则
      • 2.4.1 基本介绍
      • 2.4.2 应用实例
      • 2.4.3 应传统方法的问题和使用接口隔离原则改进
    • 2.5 依赖倒转原则
      • 2.5.1 基本介绍
      • 2.5.2 应用实例
      • 2.5.3 依赖关系传递的三种方式和应用案例
    • 2.6 里氏替换原则
      • 2.6.1 OO 中继承性的思考和说明
      • 2.6.2 基本介绍
      • 2.6.3 一个程序引出的问题和思考
      • 2.6.4 解决方法
    • 2.7 开闭原则
      • 2.7.1 基本介绍
      • 2.7.2 看一段代码
      • 2.7.3 方式 1 的优缺点
      • 2.7.4 的改进的思路分析
    • 2.8 迪米特法则
      • 2.8.1 基本介绍
      • 2.8.2 应用实例
      • 2.8.3 应用实例改进
      • 2.8.4 注意事项和细节
    • 2.9 合成复用原则
      • 2.9.1 基本介绍
    • 2.10 设计原则核心思想

第一章 内容介绍 1.1 设计模式的重要性 1) 软件工程中,设计模式(design pattern)是对软件设计中普遍存在(反复出现)的各种问题,所提出的解决方案。这个术语是由埃里希·伽玛(Erich Gamma)等人在 1990 年代从建筑设计领域引入到计算机科学的
2) 大厦 VS 简易房
图解设计模式|<Java设计模式>(一)内容介绍 | 设计模式七大原则
文章图片

3) 拿实际工作经历来说, 当一个项目开发完后,如果客户提出增新功能,怎么办?。(可扩展性,使用设计模式,软件具有很好的扩展性)
图解设计模式|<Java设计模式>(一)内容介绍 | 设计模式七大原则
文章图片

4) 如果项目开发完后,原来程序员离职,你接手维护该项目怎么办? (维护性[可读性、规范性])
5) 目前程序员门槛越来越高,一线 IT 公司(大厂),都会问你在实际项目中使用过什么设计模式,怎样使用的,解决了什么问题
6) **设计模式在软件中哪里?**面向对象(oo)=>功能模块[设计模式+算法(数据结构)]=>框架[使用到多种设计模式]=>架构 [服务器集群]
7) 如果想成为合格软件工程师,那就花时间来研究下设计模式是非常必要的
第二章 设计模式七大原则 2.1 设计模式的目的 编写软件过程中,程序员面临着来自 耦合性,内聚性以及可维护性,可扩展性,重用性,灵活性 等多方面的
挑战,设计模式是为了让程序(软件),具有更好
  • 代码重用性 (即:相同功能的代码,不用多次编写)
  • 可读性 (即:编程规范性, 便于其他程序员的阅读和理解)
  • 可扩展性 (即:当需要增加新的功能时,非常的方便,成本低。称为可维护)
  • 可靠性 (即:当我们增加新的功能后,对原来的功能没有影响)
  • 使程序呈现高内聚,低耦合的特性(即:模块内部高度紧密,模块之间耦合度较低)
分享金句:
  • 设计模式包含了面向对象的精髓,“懂了设计模式,你就懂了面向对象分析和设计(OOA/D)的精要”
  • Scott Mayers 在其巨著《Effective C++》就曾经说过:C++老手和 C++新手的区别就是前者手背上有很多伤疤
2.2 设计模式七大原则 设计模式原则,其实就是程序员在编程时,应当遵守的原则,也是各种==设计模式的基础==(即:设计模式为什么这样设计的依据)
设计模式常用的七大原则有:
  1. 单一职责原则
  2. 接口隔离原则
  3. 依赖倒转(倒置)原则
  4. 里氏替换原则
  5. 开闭原则
  6. 迪米特法则
  7. 合成复用原则
2.3 单一职责原则 2.3.1 基本介绍
对类来说的,即一个类应该只负责一项职责。如类 A 负责两个不同职责:职责 1,职责 2。当职责 1 需求变更
而改变 A 时,可能造成职责 2 执行错误,所以需要将类 A 的粒度分解为 A1,A2
2.3.2 应用实例
以交通工具案例讲解
1) 方案 1 [分析说明]
public class SingleResponsibility1 { public static void main(String[] args) { Vehicle vehicle = new Vehicle(); vehicle.run("摩托车"); vehicle.run("汽车"); vehicle.run("飞机"); } }//交通工具类 //1.在方式1的run方法中,违法了单一职责原则 //2.解决的解决的方案非常简单,根据交通工具运行方法不同,分解成不同类即可. class Vehicle { public void run(String vehicle) { System.out.println(vehicle + "在公路上运行..."); } }

2) 方案 2 [分析说明]
public class SingleResponsibility2 { public static void main(String[] args) { RoadVehicle roadVehicle = new RoadVehicle(); roadVehicle.run("摩托车"); roadVehicle.run("汽车"); AirVehicle airVehicle = new AirVehicle(); airVehicle.run("飞机"); WaterVehicle waterVehicle = new WaterVehicle(); waterVehicle.run("轮船"); } }//方案2的分析 //1.遵守单一职责原则 //2.但是这样做的改动很大,即将类分解,同时修改客户端 //3.改进:直接修改Vehicle类,改动的代码会比较少==>方案三 class RoadVehicle { public void run(String vehicle) { System.out.println(vehicle + "在公路运行..."); } }class AirVehicle{ public void run(String vehicle){ System.out.println(vehicle + "在天空运行..."); } }class WaterVehicle{ public void run(String vehicle){ System.out.println(vehicle + "在水中运行..."); } }

3) 方案 3 [分析说明]
public class SingleResponsibility3 { public static void main(String[] args) { Vehicle2 vehicle2 = new Vehicle2(); vehicle2.runRoad("摩托车"); vehicle2.runAir("飞机"); vehicle2.runWater("轮船"); } }//方案三 //1.这种修改方法没有对原来的类做大的修改,只是增加方法 //2.这里虽然没有在类这个级别上遵守单一职责原则,但是在方法级别上,仍然是遵守单一职责 class Vehicle2 { public void runRoad(String vehicle) { System.out.println(vehicle + "在公路上运行..."); }public void runAir(String vehicle){ System.out.println(vehicle+"在天空运行..."); }public void runWater(String vehicle){ System.out.println(vehicle+"在水中行..."); } }

2.3.3 单一职责原则注意事项和细节
1) 降低类的复杂度,一个类只负责一项职责。
2) 提高类的可读性,可维护性
3) 降低变更引起的风险
4) 通常情况下,我们应当遵守单一职责原则,只有逻辑足够简单,才可以在代码级违反单一职责原则;只有类中方法数量足够少,可以在方法级别保持单一职责原则
2.4 接口隔离原则 2.4.1 基本介绍
1) 客户端不应该依赖它不需要的接口,即**一个类对另一个类的依赖应该建立在最小的接口上**
2) 先看一张图:
图解设计模式|<Java设计模式>(一)内容介绍 | 设计模式七大原则
文章图片

3) 类 A 通过接口 Interface1 依赖类 B,类 C 通过接口 Interface1 依赖类 D,如果接口 Interface1 对于类 A 和类 C来说不是最小接口,那么类 B 和类 D 必须去实现他们不需要的方法。
4) 按隔离原则应当这样处理:将接口 Interface1 拆分为独立的几个接口(这里我们拆分成 3 个接口),类 A 和类 C 分别与他们需要的接口建立依赖关系。也就是采用接口隔离原则
2.4.2 应用实例
1) 类 A 通过接口 Interface1 依赖类 B,类 C 通过接口 Interface1 依赖类 D,请编写代码完成此应用实例。
2)没有使用接口隔离原则代码
/** * @author lxy * @version 1.0 * @Description * @date 2022/3/18 22:37 */ public class segregation1 { public static void main(String[] args) { A a = new A(); a.depend1(new B()); //A类通过接口去依赖B a.depend2(new B()); a.depend3(new B()); C c = new C(); c.depend1(new D()); //C类通过接口去依赖D类 c.depend4(new D()); c.depend5(new D()); } }//接口 interface Interface1{ void operation1(); void operation2(); void operation3(); void operation4(); void operation5(); }class B implements Interface1{@Override public void operation1() { System.out.println("B 实现了 operation1"); }@Override public void operation2() { System.out.println("B 实现了 operation2"); }@Override public void operation3() { System.out.println("B 实现了 operation3"); }@Override public void operation4() { System.out.println("B 实现了 operation4"); }@Override public void operation5() { System.out.println("B 实现了 operation5"); } }class D implements Interface1{@Override public void operation1() { System.out.println("D 实现了 operation1"); }@Override public void operation2() { System.out.println("D 实现了 operation2"); }@Override public void operation3() { System.out.println("D 实现了 operation3"); }@Override public void operation4() { System.out.println("D 实现了 operation4"); }@Override public void operation5() { System.out.println("D 实现了 operation5"); } }//A类通过接口Interface1(使用接口方法) 依赖(使用)B类,但是只会用到1,2,3方法 class A{ public void depend1(Interface1 i){ i.operation1(); }public void depend2(Interface1 i){ i.operation2(); }public void depend3(Interface1 i){ i.operation3(); }}//C类通过接口Interface1 依赖(使用)D类,但是只会用到1,4,5方法 class C{ public void depend1(Interface1 i){ i.operation1(); }public void depend4(Interface1 i){ i.operation4(); }public void depend5(Interface1 i){ i.operation5(); } }

2.4.3 应传统方法的问题和使用接口隔离原则改进
1) 类 A 通过接口 Interface1 依赖类 B,类 C 通过接口 Interface1 依赖类 D,如果接口 Interface1 对于类 A 和类 C来说不是最小接口,那么类 B 和类 D 必须去实现他们不需要的方法
2) 将接口 Interface1 拆分为独立的几个接口,类 A 和类 C 分别与他们需要的接口建立依赖关系。也就是采用接口隔离原则
3) 接口 Interface1 中出现的方法,根据实际情况拆分为三个接口
图解设计模式|<Java设计模式>(一)内容介绍 | 设计模式七大原则
文章图片

4) 代码实现
package com.rg.principle.segregation; /** * @author lxy * @version 1.0 * @Description * @date 2022/3/18 22:37 */ public class segregation2 { public static void main(String[] args) { A a = new A(); a.depend1(new B()); //A类通过接口去依赖B a.depend2(new B()); a.depend3(new B()); C c = new C(); c.depend1(new D()); //C类通过接口去依赖D类 c.depend4(new D()); c.depend5(new D()); } }//接口 interface Interface1{void operation1(); }interface Interface2{void operation2(); void operation3(); }interface Interface3{void operation4(); void operation5(); } class B implements Interface1,Interface2{@Override public void operation1() { System.out.println("B 实现了 operation1"); }@Override public void operation2() { System.out.println("B 实现了 operation2"); }@Override public void operation3() { System.out.println("B 实现了 operation3"); }}class D implements Interface1,Interface3{@Override public void operation1() { System.out.println("D 实现了 operation1"); }@Override public void operation4() { System.out.println("D 实现了 operation4"); }@Override public void operation5() { System.out.println("D 实现了 operation5"); } }//A类通过接口Interface1,Interface2(使用接口方法) 依赖(使用)B类,但是只会用到1,2,3方法 class A{ public void depend1(Interface1 i){ i.operation1(); }public void depend2(Interface2 i){ i.operation2(); }public void depend3(Interface2 i){ i.operation3(); }}//C类通过接口Interface1,Interface4 依赖(使用)D类,但是只会用到1,4,5方法 class C{ public void depend1(Interface1 i){ i.operation1(); }public void depend4(Interface3 i){ i.operation4(); }public void depend5(Interface3 i){ i.operation5(); } }

2.5 依赖倒转原则 2.5.1 基本介绍
依赖倒转原则(Dependence Inversion Principle)是指:
  1. 高层模块不应该依赖低层模块,二者都应该依赖其抽象
  2. 抽象不应该依赖细节,细节应该依赖抽象
  3. 依赖倒转(倒置)的中心思想是面向接口编程
  4. 依赖倒转原则是基于这样的设计理念:相对于细节的多变性,抽象的东西要稳定的多。以抽象为基础搭建的架构比以细节为基础的架构要稳定的多。在 java 中,抽象指的是接口或抽象类,细节就是具体的实现类
  5. 使用接口或抽象类的目的是制定好规范,而不涉及任何具体的操作,把展现细节的任务交给他们的实现类去完成
2.5.2 应用实例
请编程完成 Person 接收消息 的功能。
1) 实现方案 1 + 分析说明
package com.rg.principle.inversion; public class DependecyInversion { public static void main(String[] args) { Person person = new Person(); person.receive(new Email()); }}class Email { public String getInfo() { return "电子邮件信息: hello,world"; } }//完成Person接收消息的功能 //方式1分析 //1. 简单,比较容易想到 //2. 如果我们获取的对象是 微信,短信等等,则新增类,同时Person也要增加相应的接收方法 //3. 解决思路:引入一个抽象的接口IReceiver, 表示接收者, 这样Person类与接口IReceiver发生依赖 //因为Email, WeiXin 等等属于接收的范围,他们各自实现IReceiver 接口就ok, 这样我们就符号依赖倒转原则 class Person { public void receive(Email email ) { System.out.println(email.getInfo()); } }

2) 实现方案 2(依赖倒转) + 分析说明
package com.rg.principle.inversion.improve; public class DependecyInversion { public static void main(String[] args) { //客户端无需改变 Person person = new Person(); person.receive(new Email()); person.receive(new WeiXin()); }}//定义接口 interface IReceiver { public String getInfo(); }class Email implements IReceiver { public String getInfo() { return "电子邮件信息: hello,world"; } }//增加微信 class WeiXin implements IReceiver { public String getInfo() { return "微信信息: hello,ok"; } }//方式2 class Person { //这里我们是对接口的依赖 public void receive(IReceiver receiver ) { System.out.println(receiver.getInfo()); } }

2.5.3 依赖关系传递的三种方式和应用案例
  1. 接口传递
  2. 构造方法传递
  3. setter 方式传递
应用案例代码
package com.rg.principle.inversion.improve; public class DependencyPass { public static void main(String[] args) { // TODO Auto-generated method stub //ChangHong changHong = new ChangHong(); //OpenAndClose openAndClose = new OpenAndClose(); //openAndClose.open(changHong); // 通过构造器进行依赖传递 //ChangHong changHong = new ChangHong(); //OpenAndClose openAndClose = new OpenAndClose(changHong); //openAndClose.open(); // 通过setter方法进行依赖传递 ChangHong changHong = new ChangHong(); OpenAndClose openAndClose = new OpenAndClose(); openAndClose.setTv(changHong); openAndClose.open(); }}// 方式1: 通过接口传递实现依赖 // 开关的接口 //interface IOpenAndClose { // public void open(ITV tv); // 抽象方法,接收接口 //} // //interface ITV { // ITV接口 // public void play(); //} // //class ChangHong implements ITV { // // @Override // public void play() { //// TODO Auto-generated method stub //System.out.println("长虹电视机,打开"); // } // //} // 实现接口 //class OpenAndClose implements IOpenAndClose { // public void open(ITV tv) { //tv.play(); // } //}// 方式2: 通过构造方法依赖传递 //interface IOpenAndClose { // public void open(); // 抽象方法 //} // //interface ITV { // ITV接口 // public void play(); //} // //class ChangHong implements ITV { // // @Override // public void play() { //// TODO Auto-generated method stub //System.out.println("长虹电视机,打开"); // } // //} // //class OpenAndClose implements IOpenAndClose { // public ITV tv; // 成员 // // public OpenAndClose(ITV tv) { // 构造器 //this.tv = tv; // } // // public void open() { //this.tv.play(); // } //}// 方式3 , 通过setter方法传递 interface IOpenAndClose { public void open(); // 抽象方法 public void setTv(ITV tv); }interface ITV { // ITV接口 public void play(); }class OpenAndClose implements IOpenAndClose { private ITV tv; public void setTv(ITV tv) { this.tv = tv; } public void open() { this.tv.play(); } }class ChangHong implements ITV { @Override public void play() { // TODO Auto-generated method stub System.out.println("长虹电视机,打开"); }}

2.6 里氏替换原则 2.6.1 OO 中继承性的思考和说明
  • 1)继承包含这样一层含义:父类中凡是已经实现好的方法,实际上是在设定规范和契约,虽然它不强制要求所有的子类必须遵循这些契约,但是如果子类对这些已经实现的方法任意修改,就会对整个继承体系造成破坏
  • 2)继承在给程序设计带来便利的同时,也带来了弊端。比如使用继承会给程序带来侵入性,程序的可移植性降低,增加对象间的耦合性,如果一个类被其他的类所继承,则当这个类需要修改时,必须考虑到所有的子类,并且父类修改后,所有涉及到子类的功能都有可能产生故障.
  • 3)问题提出:在编程中,如何正确使用继承?=>里氏替换原则
2.6.2 基本介绍
  • 1)里氏替换原则(Liskov Substitution Principle) 在1988年,由麻省理工学院的以为姓里的女士提出的
  • 2)如果对每个类型为 T1 的对象 o1,都有类型为 T2 的对象 o2,使得以 T1 定义的所有程序 P 在所有的对象 o1 都代换成 o2 时,程序 P 的行为没有发生变化,那么类型 T2 是类型 T1 的子类型。换句话说,所有引用基类的地方必须能透明地使用其子类的对象
  • 3)在使用继承时,遵循里氏替换原则,在子类中尽量不要重写父类的方法
  • 4)里氏替换原则告诉我们,继承实际上让两个类耦合性增强了,在适当的情况下,可以通过聚合、组合、依赖来解决问题
2.6.3 一个程序引出的问题和思考
先看个程序,思考下问题和解决思路
package com.rg.principle.liskov; public class Liskov { public static void main(String[] args) { // TODO Auto-generated method stub A a = new A(); System.out.println("11-3=" + a.func1(11, 3)); System.out.println("1-8=" + a.func1(1, 8)); System.out.println("-----------------------"); B b = new B(); System.out.println("11-3=" + b.func1(11, 3)); //这里本意是求出11-3 System.out.println("1-8=" + b.func1(1, 8)); // 1-8 System.out.println("11+3+9=" + b.func2(11, 3)); }}// A类 class A { // 返回两个数的差 public int func1(int num1, int num2) { return num1 - num2; } }// B类继承了A // 增加了一个新功能:完成两个数相加,然后和9求和 class B extends A { //这里,重写了A类的方法, 可能是无意识 public int func1(int a, int b) { return a + b; } public int func2(int a, int b) { return func1(a, b) + 9; } }

图解设计模式|<Java设计模式>(一)内容介绍 | 设计模式七大原则
文章图片

2.6.4 解决方法
1)我们发现原来运行正常的相减功能发生了错误。原因就是类 B 无意中重写了父类的方法,造成原有功能出现错误。在实际编程中,我们常常会通过重写父类的方法完成新的功能,这样写起来虽然简单,但整个继承体系的复用性会比较差。特别是运行多态比较频繁的时候
2)通用的做法是:原来的父类和子类都继承一个更通俗的基类,原有的继承关系去掉,采用依赖、聚合、组合等关系代替
3)改进方案
图解设计模式|<Java设计模式>(一)内容介绍 | 设计模式七大原则
文章图片

package com.rg.principle.liskov.imporve; public class Liskov { public static void main(String[] args) { // TODO Auto-generated method stub A a = new A(); System.out.println("11-3=" + a.func1(11, 3)); System.out.println("1-8=" + a.func1(1, 8)); System.out.println("-----------------------"); B b = new B(); //因为B类不再继承A类,因此调用者,不会再func1是求减法 //调用完成的功能就会很明确 System.out.println("11+3=" + b.func1(11, 3)); //这里本意是求出11+3 System.out.println("1+8=" + b.func1(1, 8)); // 1+8 System.out.println("11+3+9=" + b.func2(11, 3)); //使用组合仍然可以使用到A类相关方法 System.out.println("11-3=" + b.func3(11, 3)); // 这里本意是求出11-3 }}//创建一个更加基础的基类 class Base { //把更加基础的方法和成员写到Base类 }// A类 class A extends Base { // 返回两个数的差 public int func1(int num1, int num2) { return num1 - num2; } }// B类继承了A // 增加了一个新功能:完成两个数相加,然后和9求和 class B extends Base { //如果B需要使用A类的方法,使用组合关系 private A a = new A(); public int func1(int a, int b) { return a + b; } public int func2(int a, int b) { return func1(a, b) + 9; } //我们仍然想使用A的方法 public int func3(int a, int b) { return this.a.func1(a, b); } }

2.7 开闭原则 2.7.1 基本介绍
  • 1)开闭原则是编程中最基础、最重要的设计原则
  • 2)一个软件实体如类、模块和函数应该对扩展开放(对提供者而言),对修改关闭(对使用者而言)。抽象构建框架,用实现扩展细节
  • 3)当软件需要变化时,尽量通过扩展软件实体的行为来实现变化,而不是通过修改已有的代码来实现变化
  • 4)编程中遵循其它原则,以及使用设计模式的目的就是遵循开闭原则
2.7.2 看一段代码
一个画图形的功能,类图设计如下:
图解设计模式|<Java设计模式>(一)内容介绍 | 设计模式七大原则
文章图片

package com.rg.principle.ocp; public class Ocp { public static void main(String[] args) { //使用看看存在的问题 GraphicEditor graphicEditor = new GraphicEditor(); graphicEditor.drawShape(new Rectangle()); graphicEditor.drawShape(new Circle()); graphicEditor.drawShape(new Triangle()); }}//这是一个用于绘图的类 [使用方] class GraphicEditor { //接收Shape对象,然后根据type,来绘制不同的图形 public void drawShape(Shape s) { if (s.m_type == 1) drawRectangle(s); else if (s.m_type == 2) drawCircle(s); else if (s.m_type == 3) drawTriangle(s); } //绘制矩形 public void drawRectangle(Shape r) { System.out.println(" 绘制矩形 "); } //绘制圆形 public void drawCircle(Shape r) { System.out.println(" 绘制圆形 "); } //绘制三角形 public void drawTriangle(Shape r) { System.out.println(" 绘制三角形 "); } }//Shape类,基类 class Shape { int m_type; }class Rectangle extends Shape { Rectangle() { super.m_type = 1; } }class Circle extends Shape { Circle() { super.m_type = 2; } }//新增画三角形 class Triangle extends Shape { Triangle() { super.m_type = 3; } }

2.7.3 方式 1 的优缺点
  • 1)优点是比较好理解,简单易操作
  • 2)缺点是违反了设计模式的 OCP 原则,即对扩展开放(提供方),对修改关闭(使用方)。即当我们给类增加新功能的时喉,尽量不修改代码,或者尽可能少修改代码
  • 3)比如我们这时要新增加一个图形种类,我们需要做如下修改,修改的地方较多
图解设计模式|<Java设计模式>(一)内容介绍 | 设计模式七大原则
文章图片

2.7.4 的改进的思路分析
思路: 把创建 Shape 类做成抽象类,并提供一个抽象的 draw 方法,让子类去实现即可, 这样我们有新的图形种类时,只需要让新的图形类继承 Shape,并实现 draw 方法即可,使用方的代码就不需要修改,满足了开闭原则
改进后的代码:
package com.rg.principle.ocp.improve; public class Ocp { public static void main(String[] args) { //使用看看存在的问题 GraphicEditor graphicEditor = new GraphicEditor(); graphicEditor.drawShape(new Rectangle()); graphicEditor.drawShape(new Circle()); graphicEditor.drawShape(new Triangle()); graphicEditor.drawShape(new OtherGraphic()); }}//这是一个用于绘图的类 [使用方] class GraphicEditor { //接收Shape对象,调用draw方法 public void drawShape(Shape s) { s.draw(); } }//Shape类,基类 abstract class Shape { int m_type; public abstract void draw(); //抽象方法 }class Rectangle extends Shape { Rectangle() { super.m_type = 1; } @Override public void draw() { // TODO Auto-generated method stub System.out.println(" 绘制矩形 "); } }class Circle extends Shape { Circle() { super.m_type = 2; } @Override public void draw() { // TODO Auto-generated method stub System.out.println(" 绘制圆形 "); } }//新增画三角形 class Triangle extends Shape { Triangle() { super.m_type = 3; } @Override public void draw() { // TODO Auto-generated method stub System.out.println(" 绘制三角形 "); } }//新增一个图形 class OtherGraphic extends Shape { OtherGraphic() { super.m_type = 4; } @Override public void draw() { // TODO Auto-generated method stub System.out.println(" 绘制其它图形 "); } }

2.8 迪米特法则 2.8.1 基本介绍
  • 1)一个对象应该对其他对象保持最少的了解
  • 2)类与类关系越密切,耦合度越大
  • 3)迪米特法则又叫最少知道原则,即一个类对自己依赖的类知道的越少越好。也就是说,对于被依赖的类不管多么复杂,都尽量将逻辑封装在类的内部。对外除了提供的 public 方法,不对外泄露任何信息
  • 4)迪米特法则还有个更简单的定义:只与直接的朋友通信
  • 5)直接的朋友:每个对象都会与其他对象有耦合关系,只要两个对象之间有耦合关系,我们就说这两个对象之间是朋友关系。耦合的方式很多:依赖、关联、组合、聚合等。其中,我们称出现成员变量,方法参数,方法返回值中的类为直接的朋友,而出现在局部变量中的类不是直接的朋友。也就是说,陌生的类最好不要以局部变量的形式出现在类的内部
2.8.2 应用实例
【图解设计模式|<Java设计模式>(一)内容介绍 | 设计模式七大原则】1)有一个学校,下属有各个学院和总部,现要求打印出学校总部员工 ID 和学院员工的 id
2)编程实现上面的功能,看代码演示
package com.rg.principle.demeter; import java.util.ArrayList; import java.util.List; //客户端 public class Demeter1 { public static void main(String[] args) { //创建了一个 SchoolManager 对象 SchoolManager schoolManager = new SchoolManager(); //输出学院的员工id 和学校总部的员工信息 schoolManager.printAllEmployee(new CollegeManager()); }}//学校总部员工类 class Employee { private String id; public void setId(String id) { this.id = id; } public String getId() { return id; } }//学院的员工类 class CollegeEmployee { private String id; public void setId(String id) { this.id = id; } public String getId() { return id; } }//管理学院员工的管理类 class CollegeManager { //返回学院的所有员工 public List getAllEmployee() { List list = new ArrayList(); for (int i = 0; i < 10; i++) { //这里我们增加了10个员工到 list CollegeEmployee emp = new CollegeEmployee(); emp.setId("学院员工id= " + i); list.add(emp); } return list; } }//学校管理类//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager //CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则 class SchoolManager { //返回学校总部的员工 public List getAllEmployee() { List list = new ArrayList(); for (int i = 0; i < 5; i++) { //这里我们增加了5个员工到 list Employee emp = new Employee(); emp.setId("学校总部员工id= " + i); list.add(emp); } return list; } //该方法完成输出学校总部和学院员工信息(id) void printAllEmployee(CollegeManager sub) {//分析问题 //1. 这里的 CollegeEmployee 不是SchoolManager的直接朋友 //2. CollegeEmployee 是以局部变量方式出现在 SchoolManager //3. 违反了 迪米特法则 //获取到学院员工 List list1 = sub.getAllEmployee(); System.out.println("------------学院员工------------"); for (CollegeEmployee e : list1) { System.out.println(e.getId()); } //获取到学校总部员工 List list2 = this.getAllEmployee(); System.out.println("------------学校总部员工------------"); for (Employee e : list2) { System.out.println(e.getId()); } } }

2.8.3 应用实例改进
  • 1)前面设计的问题在于 SchoolManager 中,CollegeEmployee 类并不是 SchoolManager 类的直接朋友(分析)
  • 2)按照迪米特法则,应该避免类中出现这样非直接朋友关系的耦合
  • 3)对代码按照迪米特法则进行改进(看老师演示)
package com.rg.principle.demeter.improve; import java.util.ArrayList; import java.util.List; //客户端 public class Demeter1 { public static void main(String[] args) { System.out.println("~~~使用迪米特法则的改进~~~"); //创建了一个 SchoolManager 对象 SchoolManager schoolManager = new SchoolManager(); //输出学院的员工id 和学校总部的员工信息 schoolManager.printAllEmployee(new CollegeManager()); }}//学校总部员工类 class Employee { private String id; public void setId(String id) { this.id = id; } public String getId() { return id; } }//学院的员工类 class CollegeEmployee { private String id; public void setId(String id) { this.id = id; } public String getId() { return id; } }//管理学院员工的管理类 class CollegeManager { //返回学院的所有员工 public List getAllEmployee() { List list = new ArrayList(); for (int i = 0; i < 10; i++) { //这里我们增加了10个员工到 list CollegeEmployee emp = new CollegeEmployee(); emp.setId("学院员工id= " + i); list.add(emp); } return list; } //输出学院员工的信息 public void printEmployee() { //获取到学院员工 List list1 = getAllEmployee(); System.out.println("------------学院员工------------"); for (CollegeEmployee e : list1) { System.out.println(e.getId()); } } }//学校管理类//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager //CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则 class SchoolManager { //返回学校总部的员工 public List getAllEmployee() { List list = new ArrayList(); for (int i = 0; i < 5; i++) { //这里我们增加了5个员工到 list Employee emp = new Employee(); emp.setId("学校总部员工id= " + i); list.add(emp); } return list; } //该方法完成输出学校总部和学院员工信息(id) void printAllEmployee(CollegeManager sub) {//分析问题 //1. 将输出学院的员工方法,封装到CollegeManager sub.printEmployee(); //获取到学校总部员工 List list2 = this.getAllEmployee(); System.out.println("------------学校总部员工------------"); for (Employee e : list2) { System.out.println(e.getId()); } } }

2.8.4 注意事项和细节
  • 1)迪米特法则的核心是**降低类之间的耦合**
  • 2)但是注意:由于每个类都减少了不必要的依赖,因此迪米特法则只是要求降低类间(对象间)耦合关系,并不是要求完全没有依赖关系
2.9 合成复用原则 2.9.1 基本介绍
原则是尽量使用合成/聚合的方式,而不是使用继承
图解设计模式|<Java设计模式>(一)内容介绍 | 设计模式七大原则
文章图片

2.10 设计原则核心思想
  • 1)找出应用中可能需要变化之处,把它们独立出来,不要和那些不需要变化的代码混在一起
  • 2)针对接口编程,而不是针对实现编程
  • 3)为了交互对象之间的松耦合设计而努力
如果有收获!!! 希望老铁们来个三连,点赞、收藏、转发。
创作不易,别忘点个赞,可以让更多的人看到这篇文章,顺便鼓励我写出更好的博客

    推荐阅读