C++实现LeetCode(110.平衡二叉树)

[LeetCode] 110.Balanced Binary Tree 平衡二叉树 Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:

a binary tree in which the depth of the two subtrees of everynode never differ by more than 1.
【C++实现LeetCode(110.平衡二叉树)】Example 1:
Given the following tree [3,9,20,null,null,15,7]:
3
/ \
920
/\
157
Return true.

Example 2:
Given the following tree [1,2,2,3,3,null,null,4,4]:
1
/ \
22
/ \
33
/ \
44
Return false.
求二叉树是否平衡,根据题目中的定义,高度平衡二叉树是每一个结点的两个子树的深度差不能超过1,那么我们肯定需要一个求各个点深度的函数,然后对每个节点的两个子树来比较深度差,时间复杂度为O(NlgN),代码如下:
解法一:
class Solution {public:bool isBalanced(TreeNode *root) {if (!root) return true; if (abs(getDepth(root->left) - getDepth(root->right)) > 1) return false; return isBalanced(root->left) && isBalanced(root->right); }int getDepth(TreeNode *root) {if (!root) return 0; return 1 + max(getDepth(root->left), getDepth(root->right)); }};

上面那个方法正确但不是很高效,因为每一个点都会被上面的点计算深度时访问一次,我们可以进行优化。方法是如果我们发现子树不平衡,则不计算具体的深度,而是直接返回-1。那么优化后的方法为:对于每一个节点,我们通过checkDepth方法递归获得左右子树的深度,如果子树是平衡的,则返回真实的深度,若不平衡,直接返回-1,此方法时间复杂度O(N),空间复杂度O(H),参见代码如下:
解法二:
class Solution {public:bool isBalanced(TreeNode *root) {if (checkDepth(root) == -1) return false; else return true; }int checkDepth(TreeNode *root) {if (!root) return 0; int left = checkDepth(root->left); if (left == -1) return -1; int right = checkDepth(root->right); if (right == -1) return -1; int diff = abs(left - right); if (diff > 1) return -1; else return 1 + max(left, right); }};

类似题目:
Maximum Depth of Binary Tree
参考资料:
https://leetcode.com/problems/balanced-binary-tree/
https://leetcode.com/problems/balanced-binary-tree/discuss/35691/The-bottom-up-O(N)-solution-would-be-better
https://leetcode.com/problems/balanced-binary-tree/discuss/35686/Java-solution-based-on-height-check-left-and-right-node-in-every-recursion-to-avoid-further-useless-search
到此这篇关于C++实现LeetCode(110.平衡二叉树)的文章就介绍到这了,更多相关C++实现平衡二叉树内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

    推荐阅读