使用|使用 Laradock 安装 ElasticSearch

使用 Laradock 安装 ElasticSearch

  • ElasticSearch 可视化工具 ElasticHQ / 官网地址
安装和使用
  1. 使用 docker-compose up 命令运行 ElasticSearch 容器
docker-compose up -d elasticsearch

  1. 打开浏览器并通过端口 9200 访问本地主机 http://localhost:9200
默认用户是 user ,默认密码是 changeme
如果是在 laradock 中使用时
curl http://elasticsearch:9200

安装 ElasticSearch 插件
# 安装一个 ElasticSearch 插件 docker-compose exec elasticsearch /usr/share/elasticsearch/bin/elasticsearch-plugin install {plugin-name}# 重启容器 docker-compose restart elasticsearch

安装 elasticsearch-analysis-ik 中文分词插件
比如,此时需要安装 elasticsearch-analysis-ik 中文分词插件,需要下载 ik 的 releases 源码 zip 包
# 方式1,你可以直接在 elasticsearch 容器外,执行以下命令 docker-compose exec elasticsearch /usr/share/elasticsearch/bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.9.1/elasticsearch-analysis-ik-7.9.1.zip# 方式2,你可以直接进入到 elasticsearch 容器内,然后执行以下命令 ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.9.1/elasticsearch-analysis-ik-7.9.1.zip

需要注意的是:如果你的 elasticsearch 的版本是 7.9.1 那么,你安装的 ik 插件也必须是 7.9.1 的版本,elasticsearch 的版本号可以通过访问 http://localhost:9200/ 查看 version.number 字段查看,然后 docker-compose restart elasticsearch 重启 elasticsearch 容器即可
安装 elasticsearch-analysis-ik 过程如下所示
[root@f1831cb3b4dd elasticsearch]# ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.9.1/elasticsearch-analysis-ik-7.9.1.zip -> Installing https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.9.1/elasticsearch-analysis-ik-7.9.1.zip -> Downloading https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.9.1/elasticsearch-analysis-ik-7.9.1.zip [=================================================] 100%?? @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @WARNING: plugin requires additional permissions@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ * java.net.SocketPermission * connect,resolve See http://docs.oracle.com/javase/8/docs/technotes/guides/security/permissions.html for descriptions of what these permissions allow and the associated risks.Continue with installation? [y/N]y -> Installed analysis-ik [root@f1831cb3b4dd elasticsearch]# ./bin/elasticsearch-plugin list analysis-ik

查看插件列表
./bin/elasticsearch-plugin list

ElasticSearch 和 mysql 数据库的概念对比
MySQL Elasticsearch
表(Table) 索引(Index)
记录(Row) 文档(Document)
字段(Column) 字段(Fields)
ElasticSearch 的简单使用 新建索引 index (创建表)
curl -XPUT http://localhost:9200/test_index# 在 Elasticsearch 的返回中如果包含了 "acknowledged" : true, 则代表请求成功。 {"acknowledged":true,"shards_acknowledged":true,"index":"test_index"}

查看
curl http://localhost:9200/test_index{"test_index":{"aliases":{},"mappings":{},"settings":{"index":{"creation_date":"1617069458624","number_of_shards":"1","number_of_replicas":"1","uuid":"XKjqatZTSOu9I_PiwzaNOQ","version":{"created":"7090199"},"provided_name":"test_index"}}}}# 可以加上 pretty 参数,返回比较人性化的结构 curl http://localhost:9200/test_index\?pretty { "test_index" : { "aliases" : { }, "mappings" : { }, "settings" : { "index" : { "creation_date" : "1617069458624", "number_of_shards" : "1", "number_of_replicas" : "1", "uuid" : "XKjqatZTSOu9I_PiwzaNOQ", "version" : { "created" : "7090199" }, "provided_name" : "test_index" } } } }

创建类型
【使用|使用 Laradock 安装 ElasticSearch】对应的接口地址是 /{index_name}/_mapping
curl -H'Content-Type: application/json' -XPUT http://localhost:9200/test_index/_mapping?pretty -d'{ "properties": { "title": { "type": "text", "analyzer": "ik_smart" }, "description": { "type": "text", "analyzer": "ik_smart" }, "price": { "type": "scaled_float", "scaling_factor": 100 } } }'# 会返回{ "acknowledged" : true }curl -H'Content-Type: application/json' -XPUT http://localhost:9200/products/_mapping/?pretty -d'{ "properties": { "brand_id": { "type": "integer" }, "type": { "type": "integer" }, "title": { "type": "text", "analyzer": "ik_smart" }, "unit": { "type": "keyword" }, "sketch": { "type": "text", "analyzer": "ik_smart" }, "keywords": { "type": "text", "analyzer": "ik_smart" }, "tags": { "type": "keyword" }, "barcode": { "type": "keyword" }, "price": { "type": "scaled_float", "scaling_factor": 100 }, "market_price": { "type": "scaled_float", "scaling_factor": 100 }, "rating": { "type": "float" }, "sold_count": { "type": "integer" }, "review_count": { "type": "integer" }, "virtual_retail_num": { "type": "integer" }, "description": { "type": "text", "analyzer": "ik_smart" }, "stock": { "type": "integer" }, "warning_stock": { "type": "integer" }, "main_image": { "type": "keyword" }, "slider_image": { "type": "keyword" }, "status": { "type": "integer" }, "is_hot": { "type": "integer" }, "sort": { "type": "integer" }, "categories": { "type": "nested", "properties": { "id": { "type": "integer", "copy_to": "categories_id" }, "pid": { "type": "integer" }, "name": { "type": "text", "analyzer": "ik_smart", "copy_to": "categories_name" }, "description": { "type": "text", "analyzer": "ik_smart", "copy_to": "categories_description" }, "status": { "type": "integer" }, "level": { "type": "integer" }, "img": { "type": "keyword" } } }, "brand": { "type": "nested", "properties": { "id": { "type": "integer" }, "name": { "type": "text", "analyzer": "ik_smart", "copy_to": "brand_name" }, "description": { "type": "text", "analyzer": "ik_smart", "copy_to": "brand_description" }, "log_url": { "type": "keyword" }, "img": { "type": "keyword" } } }, "attrs": { "type": "nested", "properties": { "id": { "type": "integer" }, "name": { "type": "keyword", "copy_to": "attrs_name" } } }, "skus": { "type": "nested", "properties": { "id": { "type": "integer" }, "name": { "type": "text", "analyzer": "ik_smart"}, "main_url": { "type": "keyword" }, "price": { "type": "scaled_float", "scaling_factor": 100 }, "sold_count": { "type": "integer" } } } } }'

  • 提交数据中的 properties 代表这个索引中各个字段的定义,其中 key 为字段名称,value 是字段的类型定义
  • type 定义了字段的数据类型,常用的有 text / integer / date / boolean ,还有更多类型
    • keyword,这是字符串类型的一种,这种类型是告诉 Elasticsearch 不需要对这个字段做分词,通常用于邮箱、标签、属性等字段。
    • scaled_float 代表一个小数位固定的浮点型字段,与 Mysql 的 decimal 类型类似。
    • scaling_factor 用来指定小数位精度,100 就代表精确到小数点后两位。
    • nested 代表这个字段是一个复杂对象,由下一级的 properties 字段定义这个对象的字段。
  • analyzer是一个新的概念,这是告诉 Elasticsearch 应该用什么方式去给这个字段做分词,这里我们用了 ik_smart,是一个中文分词器。
  • copy_to,Elasticsearch 的多字段匹配查询是不支持查询 Nested 对象的字段,但是我们又必须查询 categories.name 字段,因此我们可以使用 copy_to 参数,可以将 categories.name 字段复制到上层,我们就可以通过 categories_name 字段做多字段匹配查询
创建文档
对应的接口地址是 /{index_name}/_doc/{id} 这里的 id 和 mysql 中的 id 不一样,不是自增的,需要我们手动指定。
# 创建 id 为 1 的文档 curl -H'Content-Type: application/json' -XPUT http://localhost:9200/test_index/_doc/1?pretty -d'{ "title": "iPhone 7P", "description": "iphone 第一批双摄像头", "price": 6799 }'# 会返回如下内容 { "_index" : "test_index", "_type" : "_doc", "_id" : "1", "_version" : 1, "result" : "created", "_shards" : { "total" : 2, "successful" : 1, "failed" : 0 }, "_seq_no" : 0, "_primary_term" : 2 }# 创建 id 为 2 的文档 curl -H'Content-Type: application/json' -XPUT http://localhost:9200/test_index/_doc/2?pretty -d'{ "title": "OPPO find x", "description": "高清像素", "price": 3499 }'# 会返回如下内容 { "_index" : "test_index", "_type" : "_doc", "_id" : "2", "_version" : 1, "result" : "created", "_shards" : { "total" : 2, "successful" : 1, "failed" : 0 }, "_seq_no" : 1, "_primary_term" : 2 }

读取文档数据
curl http://localhost:9200/test_index/_doc/1\?pretty# 会返回如下内容 { "_index" : "test_index", "_type" : "_doc", "_id" : "1", "_version" : 1, "_seq_no" : 0, "_primary_term" : 2, "found" : true, "_source" : { "title" : "iPhone 7P", "description" : "iphone 第一批双摄像头", "price" : 6799 } }

查看 Elasticsearch 索引中有多少条数据
对应的接口地址为 /{index_name}/_doc/_count
curl http://localhost:9200/test_index/_doc/_count\?pretty# 会返回如下内容 { "count" : 3, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 } }

简单搜索
curl -XPOST -H'Content-Type:application/json' http://localhost:9200/test_index/_doc/_search\?pretty -d' { "query" : { "match" : { "description" : "iphone" }} }'# 会返回如下内容 { "took" : 16, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 0.60996956, "hits" : [ { "_index" : "test_index", "_type" : "_doc", "_id" : "1", "_score" : 0.60996956, "_source" : { "title" : "iPhone 7P", "description" : "iphone 第一批双摄像头", "price" : 6799 } } ] } }

原文链接地址

    推荐阅读