轮询锁在使用时遇到的问题与解决方案!
当我们遇到死锁之后,除了可以手动重启程序解决之外,还可以考虑是使用顺序锁和轮询锁,这部分的内容可以参考我的上一篇文章,这里就不再赘述了。然而,轮询锁在使用的过程中,如果使用不当会带来新的严重问题,所以本篇我们就来了解一下这些问题,以及相应的解决方案。
问题演示
当我们没有使用轮询锁之前,可能会出现这样的问题:
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class DeadLockByReentrantLock {
public static void main(String[] args) {
Lock lockA = new ReentrantLock();
// 创建锁 A
Lock lockB = new ReentrantLock();
// 创建锁 B// 创建线程 1
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
lockA.lock();
// 加锁
System.out.println("线程 1:获取到锁 A!");
try {
Thread.sleep(1000);
System.out.println("线程 1:等待获取 B...");
lockB.lock();
// 加锁
try {
System.out.println("线程 1:获取到锁 B!");
} finally {
lockA.unlock();
// 释放锁
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lockA.unlock();
// 释放锁
}
}
});
t1.start();
// 运行线程// 创建线程 2
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
lockB.lock();
// 加锁
System.out.println("线程 2:获取到锁 B!");
try {
Thread.sleep(1000);
System.out.println("线程 2:等待获取 A...");
lockA.lock();
// 加锁
try {
System.out.println("线程 2:获取到锁 A!");
} finally {
lockA.unlock();
// 释放锁
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lockB.unlock();
// 释放锁
}
}
});
t2.start();
// 运行线程
}
}
以上代码的执行结果如下:
文章图片
从上述结果可以看出,此时程序中出现了线程相互等待,并尝试获取对方(锁)资源的情况,这就是典型的死锁问题了。
简易版轮询锁 当出现死锁问题之后,我们就可以使用轮询锁来解决它了,它的实现思路是通过轮询的方式来获取多个锁,如果中途有任意一个锁获取失败,则执行回退操作,释放当前线程拥有的所有锁,等待下一次重新执行,这样就可以避免多个线程同时拥有并霸占锁资源了,从而直接解决了死锁的问题,简易版的轮询锁实现如下:
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class SolveDeadLockExample2 {
public static void main(String[] args) {
Lock lockA = new ReentrantLock();
// 创建锁 A
Lock lockB = new ReentrantLock();
// 创建锁 B// 创建线程 1(使用轮询锁)
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
// 调用轮询锁
pollingLock(lockA, lockB);
}
});
t1.start();
// 运行线程// 创建线程 2
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
lockB.lock();
// 加锁
System.out.println("线程 2:获取到锁 B!");
try {
Thread.sleep(1000);
System.out.println("线程 2:等待获取 A...");
lockA.lock();
// 加锁
try {
System.out.println("线程 2:获取到锁 A!");
} finally {
lockA.unlock();
// 释放锁
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lockB.unlock();
// 释放锁
}
}
});
t2.start();
// 运行线程
}/**
* 轮询锁
*/
private static void pollingLock(Lock lockA, Lock lockB) {
// 轮询锁
while (true) {
if (lockA.tryLock()) { // 尝试获取锁
System.out.println("线程 1:获取到锁 A!");
try {
Thread.sleep(1000);
System.out.println("线程 1:等待获取 B...");
if (lockB.tryLock()) { // 尝试获取锁
try {
System.out.println("线程 1:获取到锁 B!");
} finally {
lockB.unlock();
// 释放锁
System.out.println("线程 1:释放锁 B.");
break;
}
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lockA.unlock();
// 释放锁
System.out.println("线程 1:释放锁 A.");
}
}
// 等待一秒再继续执行
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
以上代码的执行结果如下:
文章图片
从上述结果可以看出,当我们在程序中使用轮询锁之后就不会出现死锁的问题了,但以上轮询锁也并不是完美无缺的,下面我们来看看这个轮询锁会有什么样的问题?
问题1:死循环 以上简易版的轮询锁,如果遇到有一个线程一直霸占或者长时间霸占锁资源的情况,就会导致这个轮询锁进入死循环的状态,它会尝试一直获取锁资源,这样就会造成新的问题,带来不必要的性能开销,具体示例如下。
反例
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class SolveDeadLockExample {public static void main(String[] args) {
Lock lockA = new ReentrantLock();
// 创建锁 A
Lock lockB = new ReentrantLock();
// 创建锁 B// 创建线程 1(使用轮询锁)
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
// 调用轮询锁
pollingLock(lockA, lockB);
}
});
t1.start();
// 运行线程// 创建线程 2
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
lockB.lock();
// 加锁
System.out.println("线程 2:获取到锁 B!");
try {
Thread.sleep(1000);
System.out.println("线程 2:等待获取 A...");
lockA.lock();
// 加锁
try {
System.out.println("线程 2:获取到锁 A!");
} finally {
lockA.unlock();
// 释放锁
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
// 如果此处代码未执行,线程 2 一直未释放锁资源
// lockB.unlock();
}
}
});
t2.start();
// 运行线程
}/**
* 轮询锁
*/
public static void pollingLock(Lock lockA, Lock lockB) {
while (true) {
if (lockA.tryLock()) { // 尝试获取锁
System.out.println("线程 1:获取到锁 A!");
try {
Thread.sleep(1000);
System.out.println("线程 1:等待获取 B...");
if (lockB.tryLock()) { // 尝试获取锁
try {
System.out.println("线程 1:获取到锁 B!");
} finally {
lockB.unlock();
// 释放锁
System.out.println("线程 1:释放锁 B.");
break;
}
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lockA.unlock();
// 释放锁
System.out.println("线程 1:释放锁 A.");
}
}
// 等待一秒再继续执行
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
以上代码的执行结果如下:
文章图片
从上述结果可以看出,线程 1 轮询锁进入了死循环的状态。
优化版
针对以上死循环的情况,我们可以改进的思路有以下两种:
- 添加最大次数限制:如果经过了 n 次尝试获取锁之后,还未获取到锁,则认为获取锁失败,执行失败策略之后终止轮询(失败策略可以是记录日志或其他操作);
- 添加最大时长限制:如果经过了 n 秒尝试获取锁之后,还未获取到锁,则认为获取锁失败,执行失败策略之后终止轮询。
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class SolveDeadLockExample {public static void main(String[] args) {
Lock lockA = new ReentrantLock();
// 创建锁 A
Lock lockB = new ReentrantLock();
// 创建锁 B// 创建线程 1(使用轮询锁)
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
// 调用轮询锁
pollingLock(lockA, lockB, 3);
}
});
t1.start();
// 运行线程// 创建线程 2
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
lockB.lock();
// 加锁
System.out.println("线程 2:获取到锁 B!");
try {
Thread.sleep(1000);
System.out.println("线程 2:等待获取 A...");
lockA.lock();
// 加锁
try {
System.out.println("线程 2:获取到锁 A!");
} finally {
lockA.unlock();
// 释放锁
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
// 线程 2 忘记释放锁资源
// lockB.unlock();
// 释放锁
}
}
});
t2.start();
// 运行线程
}/**
* 轮询锁
*
* maxCount:最大轮询次数
*/
public static void pollingLock(Lock lockA, Lock lockB, int maxCount) {
// 轮询次数计数器
int count = 0;
while (true) {
if (lockA.tryLock()) { // 尝试获取锁
System.out.println("线程 1:获取到锁 A!");
try {
Thread.sleep(1000);
System.out.println("线程 1:等待获取 B...");
if (lockB.tryLock()) { // 尝试获取锁
try {
System.out.println("线程 1:获取到锁 B!");
} finally {
lockB.unlock();
// 释放锁
System.out.println("线程 1:释放锁 B.");
break;
}
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lockA.unlock();
// 释放锁
System.out.println("线程 1:释放锁 A.");
}
}// 判断是否已经超过最大次数限制
if (count++ > maxCount) {
// 终止循环
System.out.println("轮询锁获取失败,记录日志或执行其他失败策略");
return;
}// 等待一秒再继续尝试获取锁
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
以上代码的执行结果如下:
文章图片
从以上结果可以看出,当我们改进之后,轮询锁就不会出现死循环的问题了,它会尝试一定次数之后终止执行。
问题2:线程饿死 我们以上的轮询锁的轮询等待时间是固定时间,如下代码所示:
// 等待 1s 再尝试获取(轮询)锁
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
这样在特殊情况下会造成线程饿死的问题,也就是轮询锁一直获取不到锁的问题,比如以下示例。
反例
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class SolveDeadLockExample {public static void main(String[] args) {
Lock lockA = new ReentrantLock();
// 创建锁 A
Lock lockB = new ReentrantLock();
// 创建锁 B// 创建线程 1(使用轮询锁)
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
// 调用轮询锁
pollingLock(lockA, lockB, 3);
}
});
t1.start();
// 运行线程// 创建线程 2
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
while (true) {
lockB.lock();
// 加锁
System.out.println("线程 2:获取到锁 B!");
try {
System.out.println("线程 2:等待获取 A...");
lockA.lock();
// 加锁
try {
System.out.println("线程 2:获取到锁 A!");
} finally {
lockA.unlock();
// 释放锁
}
} finally {
lockB.unlock();
// 释放锁
}
// 等待一秒之后继续执行
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
});
t2.start();
// 运行线程
}/**
* 轮询锁
*/
public static void pollingLock(Lock lockA, Lock lockB, int maxCount) {
// 循环次数计数器
int count = 0;
while (true) {
if (lockA.tryLock()) { // 尝试获取锁
System.out.println("线程 1:获取到锁 A!");
try {
Thread.sleep(100);
// 等待 0.1s(获取锁需要的时间)
System.out.println("线程 1:等待获取 B...");
if (lockB.tryLock()) { // 尝试获取锁
try {
System.out.println("线程 1:获取到锁 B!");
} finally {
lockB.unlock();
// 释放锁
System.out.println("线程 1:释放锁 B.");
break;
}
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lockA.unlock();
// 释放锁
System.out.println("线程 1:释放锁 A.");
}
}// 判断是否已经超过最大次数限制
if (count++ > maxCount) {
// 终止循环
System.out.println("轮询锁获取失败,记录日志或执行其他失败策略");
return;
}// 等待一秒再继续尝试获取锁
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
以上代码的执行结果如下:
文章图片
从上述结果可以看出,线程 1(轮询锁)一直未成功获取到锁,造成这种结果的原因是:线程 1 每次轮询的等待时间为固定的 1s,而线程 2 也是相同的频率,每 1s 获取一次锁,这样就会导致线程 2 会一直先成功获取到锁,而线程 1 则会一直处于“饿死”的情况,执行流程如下图所示:
文章图片
优化版
接下来,我们可以将轮询锁的固定等待时间,改进为固定时间 + 随机时间的方式,这样就可以避免因为获取锁的频率一致,而造成轮询锁“饿死”的问题了,具体实现代码如下:
import java.util.Random;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class SolveDeadLockExample {
private static Random rdm = new Random();
public static void main(String[] args) {
Lock lockA = new ReentrantLock();
// 创建锁 A
Lock lockB = new ReentrantLock();
// 创建锁 B// 创建线程 1(使用轮询锁)
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
// 调用轮询锁
pollingLock(lockA, lockB, 3);
}
});
t1.start();
// 运行线程// 创建线程 2
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
while (true) {
lockB.lock();
// 加锁
System.out.println("线程 2:获取到锁 B!");
try {
System.out.println("线程 2:等待获取 A...");
lockA.lock();
// 加锁
try {
System.out.println("线程 2:获取到锁 A!");
} finally {
lockA.unlock();
// 释放锁
}
} finally {
lockB.unlock();
// 释放锁
}
// 等待一秒之后继续执行
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
});
t2.start();
// 运行线程
}/**
* 轮询锁
*/
public static void pollingLock(Lock lockA, Lock lockB, int maxCount) {
// 循环次数计数器
int count = 0;
while (true) {
if (lockA.tryLock()) { // 尝试获取锁
System.out.println("线程 1:获取到锁 A!");
try {
Thread.sleep(100);
// 等待 0.1s(获取锁需要的时间)
System.out.println("线程 1:等待获取 B...");
if (lockB.tryLock()) { // 尝试获取锁
try {
System.out.println("线程 1:获取到锁 B!");
} finally {
lockB.unlock();
// 释放锁
System.out.println("线程 1:释放锁 B.");
break;
}
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lockA.unlock();
// 释放锁
System.out.println("线程 1:释放锁 A.");
}
}// 判断是否已经超过最大次数限制
if (count++ > maxCount) {
// 终止循环
System.out.println("轮询锁获取失败,记录日志或执行其他失败策略");
return;
}// 等待一定时间(固定时间 + 随机时间)之后再继续尝试获取锁
try {
Thread.sleep(300 + rdm.nextInt(8) * 100);
// 固定时间 + 随机时间
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
以上代码的执行结果如下:
文章图片
从上述结果可以看出,线程 1(轮询锁)加入随机等待时间之后就不会出现线程饿死的问题了。
总结 本文我们介绍了轮询锁的用途,用于解决死锁问题,但简易版的轮询锁在某些情况下会造成死循环和线程饿死的问题,因此我们对轮询锁进行了优化,给轮询锁加入了最大轮询次数,以及随机轮询等待时间,这样就可以解决因为引入轮询锁而造成的新问题了,这样就可以愉快的使用它来解决死锁的问题了。
参考 & 鸣谢 【轮询锁在使用时遇到的问题与解决方案!】《Java并发编程实战》
?
并发原创文章推荐
- 线程的 4 种创建方法和使用详解!
- Java中用户线程和守护线程区别这么大?
- 深入理解线程池 ThreadPool
- 线程池的7种创建方式,强烈推荐你用它...
- 池化技术到达有多牛?看了线程和线程池的对比吓我一跳!
- 并发中的线程同步与锁
- synchronized 加锁 this 和 class 的区别!
- volatile 和 synchronized 的区别
- 轻量级锁一定比重量级锁快吗?
- 这样终止线程,竟然会导致服务宕机?
- SimpleDateFormat线程不安全的5种解决方案!
- ThreadLocal不好用?那是你没用对!
- ThreadLocal内存溢出代码演示和原因分析!
- Semaphore自白:限流器用我就对了!
- CountDownLatch:别浪,等人齐再团!
- CyclicBarrier:人齐了,司机就可以发车了!
- synchronized 优化手段之锁膨胀机制!
- synchronized 中的 4 个优化,你知道几个?
- ReentrantLock 中的 4 个坑!
- 图解:为什么非公平锁的性能更高?
- 死锁的 4 种排查工具!
- 死锁终结者:顺序锁和轮询锁!
关注公号「Java中文社群」查看更多有意思、涨知识的 Java 并发文章。
推荐阅读
- 边走边看——锁
- 《人性的枷锁》
- 别让习惯成为可怕的枷锁
- stm32|基于STM32和freeRTOS智能门锁设计方案
- Java并发编程|Java并发编程 - 深入剖析ReentrantLock之非公平锁加锁流程(第1篇)
- 偏向锁、轻量级锁、重量级锁的升级以及区别
- 解锁新技能
- golang锁竞争性能
- mysql数据库锁笔记
- 你的文章被锁了吗()