【最漂亮与最实用的微积分公式 高中微积分公式】高中微积分公式(最美最实用的微积分公式)
对于曲线下的阴影面积,可以表示为函数F(x) 。现在的问题是,如何构造函数表达式?
利用黎曼积分的一元方程,通过除法、近似、求和、取极限可以计算阴影面积,但过程繁琐,有些情况不能用这种方法计算 。
面积F(x)和曲线函数之间一定有某种特殊的关系 。
首先考虑如何计算下面曲线下的阴影面积 。如果h→0,下面的阴影面积等价于函数F(x)的微分dxF'(x)(dx=h):
由直接求导公式导出:
令人惊讶的是,f(x)的导数竟然是F(x) 。这是微积分的第一个基本定理:
根据微积分第一基本定理,F(a)是曲线下直线ma左边的面积,F(b)是曲线下直线nb左边的面积,F(b)-F(a)是阴影部分的面积 。
以上是微积分的第二个基本定理,用于定积分的计算:
微积分的两个基本定理描述了面积函数和曲线函数的导数和反导数的关系,使定积分的计算有了一般的表达式 。
推荐阅读
- 白矾的作用 白矾的功效与作用
- 27个幽默的小句子 成人幽默
- 喝茶为什么会影响睡眠? 喝普洱茶会失眠吗
- 吃什么抗辐射推荐 抗辐射的食物
- 留守儿童常见的心理问题 留守儿童的心理问题
- 指甲月牙越多越健康? 指甲与健康
- 仓鼠饲养八大禁忌
- 蝎子养殖效益要深思 养蝎子骗局
- 乳头内陷有什么危害 乳腺发育不良