Action|Action Recognition
Action Recognition 最近关注了行为识别的领域,这个领域主要任务是视频分类,输入一个短视频,经过训练出来的分类器,得到正确的类别。但是一个视频如果存在多个行为,那么这个任务将会变成,输入一个短视频,经过预先训练的分类器,不仅要得到每一个行为的类别,还要得到行为开始时间和结束时间。这样,这个任务的难度提高不少,也更具有挑战性。
为了方便大家进行对比实验,我把目前的方法以及效果粘贴出来,持续更新。
Related Database 常见的数据集如下:
UCF101: http://crcv.ucf.edu/data/UCF101.php
HMDB51: http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
THUMOS 15:http://www.thumos.info/home.html
Sports-1M:http://cs.stanford.edu/people/karpathy/deepvideo/
YouTube-8M:https://research.google.com/youtube8m/download.html
ActivityNet:http://activity-net.org/download.html
FCVID:http://bigvid.fudan.edu.cn/FCVID/ (特别感谢姜育刚老师对FCVID的贡献)
Recent popular method’s results
Method | HMDB51 | UCF101 |
---|---|---|
improved IDT | 57.2% | 85.9% |
IDT high-dim encode | 61.1% | 87.9% |
Two-stream [1] | 59.4% | 88% |
C3D + iDT + linear SVM [2] | - | 90.4% |
DOVF + MIFS[3] | 75% | 95.3% |
Very deep Two-stream [4] | - | 91.4% |
TSN[5] | 69.4% | 94.2% |
Multi-stream [6] | - | 92.2% |
【Action|Action Recognition】[2]Learning Spatiotemporal Features with 3D Convolutional Networks
[3]Deep local Video Feature for Action Recognition
[4]Towards Good Parctices for very deep two-stream convnets
[5]Temporal Segment Networks: Towards Good Practices for Deep Action Recognition 2016 ECCV
[6] Multi-Stream Multi-Class Fusion of Deep Networks for Video Classification
推荐阅读
- 【译】Rails|【译】Rails 5.0正式发布(Action Cable,API模式等)
- 大众点评(redux架构)
- 笔记|这是一个关于face_recognition和dlib库的安装(亲测有用,毕竟我代码都写出来了)
- @Transactional 导致报错 Lock wait timeout exceeded
- [RocksDB剖析系列]|[RocksDB剖析系列] Remote Compaction
- AnnotationTransactionAttributeSource is only available on Java 1.5 and higher
- 简单的controller方法和action方法
- MultiActionController
- Caused by: android.os.TransactionTooLargeException
- TensorFlow SiameseNet Face Recognition