痞子衡嵌入式(利用GPIO模块来测量i.MXRT1xxx的系统中断延迟时间)
大家好,我是痞子衡,是正经搞技术的痞子。今天痞子衡给大家介绍的是i.MXRT1xxx的系统中断延迟时间。
在 《Cortex-M系统中断延迟及其测量方法简介》 一文里,痞子衡介绍了 Cortex-M 中断延迟的基本概念及一种用 GPIO 模块来测量中断延迟时间的方法,今天我们就在 i.MXRT1xxx 系列芯片上用这种方法实测一下中断延迟:
一、官方指标
恩智浦 i.MXRT1xxx 系列目前有很多型号,都是基于 Cortex-M7 内核,主频从 500MHz 到 1GHz 不等。拿该系列第一款型号 i.MXRT1050 来说,在其官方主页可以看到其标称中断延迟时间低至 20ns。
在 《Cortex-M系统中断延迟》 一文第一小节里我们知道 Cortex-M7 的标准中断延迟是 12 - 14 个内核时钟周期,i.MXRT1050 主频是 600MHz ,理论计算可得 (1s / 600MHz) * 12 = 20ns,所以 i.MXRT1050 上这 20ns 的中断延迟是符合 ARM 标准的。
文章图片
二、测试代码
现在我们在芯片上实测一下,痞子衡把 i.MXRT1011/1021/1052/1062/1176 这五个型号均测了一遍,测试代码可以基于其各自 SDK 包。
以 i.MXRT1052 为例,选用 \SDK_2.10.0_EVKB-IMXRT1050\boards\evkbimxrt1050\driver_examples\gpio\input_interrupt 例程为模板(注意选择 debug build,即代码链接在 TCM 里,满足零等待内存的测试需求),按 《Cortex-M系统中断延迟》 一文第二小节设计思想修改主函数如下(关于 GPIO 中断使用可以参考 《以i.MXRT1xxx的GPIO模块为例谈谈中断处理函数(IRQHandler)的标准流程》 一文):
- Note1: 为了结果的准确性,痞子衡同时测试了多个不同类型的 GPIO 中断,因为部分 i.MXRT 型号中包含普通 GPIO 和 HSGPIO,并且有些 GPIO 事件既可以触发 Combined 型中断,也可以触发独立的中断。
- Note2: 输出信号用的 GPIO 类型对于本次测试不重要,无论选择普通 GPIO 还是 HSGPIO 去翻转,其翻转时长不影响最终测试结果。
uint32_t s_pin_low= 0x000000;
uint32_t s_pin_high = 0x800000;
////////////////////////////////////////////////////////////////////////////////
// User Button SW8 - Pin4 in RT1050-EVKB
void GPIO5_Combined_0_15_IRQHandler(void)
{
GPIO2->DR = s_pin_low;
GPIO2->DR = s_pin_high;
GPIO_PortClearInterruptFlags(GPIO5, 1U << 0);
__DSB();
}void init_gpio5_0(void)
{
gpio_pin_config_t din_config = {kGPIO_DigitalInput, 0, kGPIO_IntFallingEdge};
IOMUXC_SetPinMux(IOMUXC_SNVS_WAKEUP_GPIO5_IO00, 0U);
GPIO_PinInit(GPIO5, 0, &din_config);
NVIC_EnableIRQ(GPIO5_Combined_0_15_IRQn);
GPIO_PortEnableInterrupts(GPIO5, 1U << 0);
}////////////////////////////////////////////////////////////////////////////////
// Arduino Interface, J24-2 in RT1050-EVKB
void GPIO1_Combined_0_15_IRQHandler(void)
{
GPIO2->DR = s_pin_low;
GPIO2->DR = s_pin_high;
GPIO_PortClearInterruptFlags(GPIO1, 1U << 2);
__DSB();
}void GPIO1_INT2_IRQHandler(void)
{
GPIO2->DR = s_pin_low;
GPIO2->DR = s_pin_high;
GPIO_PortClearInterruptFlags(GPIO1, 1U << 2);
__DSB();
}void init_gpio1_2(void)
{
gpio_pin_config_t din_config = {kGPIO_DigitalInput, 0, kGPIO_IntFallingEdge};
IOMUXC_SetPinMux(IOMUXC_GPIO_AD_B0_02_GPIO1_IO02, 0U);
GPIO_PinInit(GPIO1, 2, &din_config);
NVIC_EnableIRQ(GPIO1_Combined_0_15_IRQn);
//NVIC_EnableIRQ(GPIO1_INT2_IRQn);
GPIO_PortEnableInterrupts(GPIO1, 1U << 2);
}////////////////////////////////////////////////////////////////////////////////
// TP26
void init_gpio2_23(void)
{
gpio_pin_config_t dout_config = {kGPIO_DigitalOutput, 0, kGPIO_NoIntmode};
IOMUXC_SetPinMux(IOMUXC_GPIO_B1_07_GPIO2_IO23, 0U);
IOMUXC_SetPinConfig(IOMUXC_GPIO_B1_07_GPIO2_IO23, 0x70F9U);
GPIO_PinInit(GPIO2, 23, &dout_config);
GPIO2->DR |= 0x800000;
}int main(void)
{
BOARD_ConfigMPU();
BOARD_InitBootClocks();
CLOCK_EnableClock(kCLOCK_Iomuxc);
CLOCK_EnableClock(kCLOCK_IomuxcSnvs);
init_gpio5_0();
init_gpio1_2();
init_gpio2_23();
while (1);
}
三、测试结果
现在我们来看 5 个 i.MXRT 型号的详细测试结果,根据测试结果,我们得出如下结论:
3.1 实测i.MXRT1011
- 结论1: 不同类型 GPIO(普通GPIO/HSGPIO)或者不同类型的 GPIO 中断(Combined 型/独立型),其中断延迟结果几乎是一样的(但是 i.MXRT1170 除外)。
- 结论2: i.MXRT1020/1050 上测出的 GPIO 中断延迟接近 ARM 标准值,但是 i.MXRT1010/1060/1170 上测出的 GPIO 中断延迟大于 ARM 标准值(猜测是 GPIO 模块设计导致的延迟较大,并不是内核本身延迟大)。
- 结论3: 本次方法测出的 GPIO 中断延迟不是一个固定值,存在约 3 个内核时钟周期的波动(多次测量观测到),原因可能是 PAD 信号跳变与 NVIC IRQ 信号置起的同步时机差异。
文章图片
系统时钟配置 | PAD | GPIO | IRQ | t1 | t2 | td | 中断延迟时钟数 |
---|---|---|---|---|---|---|---|
Core: 500MHz IPG: 125MHz |
GPIO_01 | GPIO1[1] | GPIO1_Combined_0_15_IRQn | 74 - 78ns | 33ns | 41 - 45ns | 20 - 23 cycles |
GPIO2[1] | GPIO2_Combined_0_15_IRQn | ||||||
GPIO_SD_05 | GPIO2[5] |
文章图片
系统时钟配置 | PAD | GPIO | IRQ | t1 | t2 | td | 中断延迟时钟数 |
---|---|---|---|---|---|---|---|
Core: 500MHz IPG: 125MHz |
GPIO_AD_B0_06 | GPIO1[6] | GPIO1_Combined_0_15_IRQn | 92 - 96ns | 64ns | 28 - 32ns | 14 - 16 cycles |
GPIO1_INT6_IRQn | |||||||
SNVS_WAKEUP | GPIO5[0] | GPIO5_Combined_0_15_IRQn |
文章图片
系统时钟配置 | PAD | GPIO | IRQ | t1 | t2 | td | 中断延迟时钟数 |
---|---|---|---|---|---|---|---|
Core: 600MHz IPG: 150MHz |
GPIO_AD_B0_02 | GPIO1[2] | GPIO1_Combined_0_15_IRQn | 78 - 82ns | 54ns | 24 - 28ns | 14 - 17 cycles |
GPIO1_INT2_IRQn | |||||||
SNVS_WAKEUP | GPIO5[0] | GPIO5_Combined_0_15_IRQn |
文章图片
系统时钟配置 | PAD | GPIO | IRQ | t1 | t2 | td | 中断延迟时钟数 |
---|---|---|---|---|---|---|---|
Core: 600MHz IPG: 150MHz |
GPIO_AD_B0_02 | GPIO1[2] | GPIO1_Combined_0_15_IRQn | 62 - 66ns | 27ns | 35 - 39ns | 21 - 24 cycles |
GPIO1_INT2_IRQn | |||||||
GPIO6[2] | GPIO6_7_8_9_IRQn | ||||||
SNVS_WAKEUP | GPIO5[0] | GPIO5_Combined_0_15_IRQn |
文章图片
系统时钟配置 | PAD | GPIO | IRQ | t1 | t2 | td | 中断延迟时钟数 |
---|---|---|---|---|---|---|---|
Core: 996MHz BUS: 240MHz |
GPIO_AD_01 | GPIO2[31] | GPIO2_Combined_16_31_IRQn | 52 - 54ns | 29ns | 23 - 25ns | 23 - 25 cycles |
CM7_GPIO2[31] | CM7_GPIO2_3_IRQn | ||||||
WAKEUP_DIG | GPIO13[0] | GPIO13_Combined_0_31_IRQn | 47 - 50ns | 18 - 21ns | 18 - 21 cycles |
欢迎订阅
文章会同时发布到我的 博客园主页、CSDN主页、知乎主页、微信公众号 平台上。
微信搜索"痞子衡嵌入式"或者扫描下面二维码,就可以在手机上第一时间看了哦。
【痞子衡嵌入式(利用GPIO模块来测量i.MXRT1xxx的系统中断延迟时间)】
文章图片
推荐阅读
- 给予孩子心理平衡的机会
- 衡阳市松木经济开发区化工企业在化学与材料科学系开设专场人才招聘会
- 权衡
- 嵌入式(编译内核、根文件系统等)
- 失衡
- 尽人事听天命,保持心境平衡
- 总有那么一些付出和回报极度不平衡的时刻——《最佳出价》
- 啥是负载均衡、高并发、分布式、集群()
- HAProxy+KeepAlived高可用负载均衡搭建
- 平衡2