OPencv中的OTSU二值化

OTSU二值化俗称大津法,主要用于图像的阈值分割,主要是针对双峰影像(指的是图像的直方图为双峰影像),简单来说OTSU算法就是要找到一个阈值(t),是的同一类加权方差最小,需要满足下列关系式
【OPencv中的OTSU二值化】OPencv中的OTSU二值化
文章图片

简单来说就是在两个峰之间找到一个阈值t,将这两个峰分开,并且使每一个峰内的方差最小,实现这个算法的python代码如下

import cv2 import numpy as np img = cv2.imread('noisy2.png',0) blur = cv2.GaussianBlur(img,(5,5),0) # find normalized_histogram, and its cumulative distribution function # 计算归一化直方图 #CalcHist(image, accumulate=0, mask=NULL) hist = cv2.calcHist([blur],[0],None,[256],[0,256]) hist_norm = hist.ravel()/hist.max() Q = hist_norm.cumsum() bins = np.arange(256) fn_min = np.inf thresh = -1 for i in xrange(1,256): p1,p2 = np.hsplit(hist_norm,[i]) # probabilities q1,q2 = Q[i],Q[255]-Q[i] # cum sum of classes b1,b2 = np.hsplit(bins,[i]) # weights # finding means and variances m1,m2 = np.sum(p1*b1)/q1, np.sum(p2*b2)/q2 v1,v2 = np.sum(((b1-m1)**2)*p1)/q1,np.sum(((b2-m2)**2)*p2)/q2 # calculates the minimization function fn = v1*q1 + v2*q2 if fn < fn_min: fn_min = fn thresh = i # find otsu's threshold value with OpenCV function ret, otsu = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) print thresh,ret


    推荐阅读