【百度飞桨架构师手把手带你零基础实践深度学习——第二周实战】
百度飞桨架构师手把手带你零基础实践深度学习——打卡计划
- 总目录
- 第二周实战
下面给出课程链接,欢迎各位小伙来来报考!本帖将持续更新。我只是飞桨的搬运工
文章图片
话不多说,这么良心的课程赶快扫码上车!https://aistudio.baidu.com/aistudio/education/group/info/1297?activityId=5&directly=1&shared=1
总目录 第二周实战 题目要求:
- 通过查阅API,使用衰减学习率,通过多次调参数,找到一个最佳的衰减步长,使得loss比原代码中下降的更快
- 请自行绘制修改学习率前后的loss衰减图
- 原代码中仅需要更改学习率部分
- 若loss下降效果不明显,可自行调大epoch_num至10
# 初次运行时将注释取消,以便解压文件
# 如果已经解压过了,则不需要运行此段代码,否则文件已经存在解压会报错
!unzip -o -q -d /home/aistudio/work/palm /home/aistudio/data/data23828//training.zip
%cd /home/aistudio/work/palm/PALM-Training400/
!unzip -o -q PALM-Training400.zip
!unzip -o -q -d /home/aistudio/work/palm /home/aistudio/data/data23828//validation.zip
!unzip -o -q -d /home/aistudio/work/palm /home/aistudio/data/data23828//valid_gt.zip
/home/aistudio/work/palm/PALM-Training400
import cv2
import random
import numpy as np# 对读入的图像数据进行预处理
def transform_img(img):
# 将图片尺寸缩放道 224x224
img = cv2.resize(img, (224, 224))
# 读入的图像数据格式是[H, W, C]
# 使用转置操作将其变成[C, H, W]
img = np.transpose(img, (2,0,1))
img = img.astype('float32')
# 将数据范围调整到[-1.0, 1.0]之间
img = img / 255.
img = img * 2.0 - 1.0
return img# 定义训练集数据读取器
def data_loader(datadir, batch_size=10, mode = 'train'):
# 将datadir目录下的文件列出来,每条文件都要读入
filenames = os.listdir(datadir)
def reader():
if mode == 'train':
# 训练时随机打乱数据顺序
random.shuffle(filenames)
batch_imgs = []
batch_labels = []
for name in filenames:
filepath = os.path.join(datadir, name)
img = cv2.imread(filepath)
img = transform_img(img)
if name[0] == 'H' or name[0] == 'N':
# H开头的文件名表示高度近似,N开头的文件名表示正常视力
# 高度近视和正常视力的样本,都不是病理性的,属于负样本,标签为0
label = 0
elif name[0] == 'P':
# P开头的是病理性近视,属于正样本,标签为1
label = 1
else:
raise('Not excepted file name')
# 每读取一个样本的数据,就将其放入数据列表中
batch_imgs.append(img)
batch_labels.append(label)
if len(batch_imgs) == batch_size:
# 当数据列表的长度等于batch_size的时候,
# 把这些数据当作一个mini-batch,并作为数据生成器的一个输出
imgs_array = np.array(batch_imgs).astype('float32')
labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
yield imgs_array, labels_array
batch_imgs = []
batch_labels = []if len(batch_imgs) > 0:
# 剩余样本数目不足一个batch_size的数据,一起打包成一个mini-batch
imgs_array = np.array(batch_imgs).astype('float32')
labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
yield imgs_array, labels_arrayreturn reader# 定义验证集数据读取器
def valid_data_loader(datadir, csvfile, batch_size=10, mode='valid'):
# 训练集读取时通过文件名来确定样本标签,验证集则通过csvfile来读取每个图片对应的标签
# 请查看解压后的验证集标签数据,观察csvfile文件里面所包含的内容
# csvfile文件所包含的内容格式如下,每一行代表一个样本,
# 其中第一列是图片id,第二列是文件名,第三列是图片标签,
# 第四列和第五列是Fovea的坐标,与分类任务无关
# ID,imgName,Label,Fovea_X,Fovea_Y
# 1,V0001.jpg,0,1157.74,1019.87
# 2,V0002.jpg,1,1285.82,1080.47
# 打开包含验证集标签的csvfile,并读入其中的内容
filelists = open(csvfile).readlines()
def reader():
batch_imgs = []
batch_labels = []
for line in filelists[1:]:
line = line.strip().split(',')
name = line[1]
label = int(line[2])
# 根据图片文件名加载图片,并对图像数据作预处理
filepath = os.path.join(datadir, name)
img = cv2.imread(filepath)
img = transform_img(img)
# 每读取一个样本的数据,就将其放入数据列表中
batch_imgs.append(img)
batch_labels.append(label)
if len(batch_imgs) == batch_size:
# 当数据列表的长度等于batch_size的时候,
# 把这些数据当作一个mini-batch,并作为数据生成器的一个输出
imgs_array = np.array(batch_imgs).astype('float32')
labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
yield imgs_array, labels_array
batch_imgs = []
batch_labels = []if len(batch_imgs) > 0:
# 剩余样本数目不足一个batch_size的数据,一起打包成一个mini-batch
imgs_array = np.array(batch_imgs).astype('float32')
labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
yield imgs_array, labels_arrayreturn reader
# -*- coding: utf-8 -*-# LeNet 识别眼疾图片import os
import random
import paddle
import paddle.fluid as fluid
import numpy as np#引入VisualDL库,并设定保存作图数据的文件位置
from visualdl import LogWriter
log_writer = LogWriter(logdir="./log")DATADIR = '/home/aistudio/work/palm/PALM-Training400/PALM-Training400'
DATADIR2 = '/home/aistudio/work/palm/PALM-Validation400'
CSVFILE = '/home/aistudio/labels.csv'# 定义训练过程
def train(model):
import paddle.fluid as fluid
with fluid.dygraph.guard(fluid.CUDAPlace(0)):
itert=0
import os
import random
import paddle
import paddle.fluid as fluid
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
#引入VisualDL库,并设定保存作图数据的文件位置
from visualdl import LogWriter
log_writer = LogWriter(logdir="./log")
loss_list=[]
DATADIR = '/home/aistudio/work/palm/PALM-Training400/PALM-Training400'
DATADIR2 = '/home/aistudio/work/palm/PALM-Validation400'
CSVFILE = '/home/aistudio/labels.csv'
print('start training ... ')
model.train()
epoch_num = 5
# 定义优化器
opt = fluid.optimizer.Momentum(learning_rate=fluid.dygraph.CosineDecay(0.001, 500,5), momentum=0.9, parameter_list=model.parameters())
# 定义数据读取器,训练数据读取器和验证数据读取器
train_loader = data_loader(DATADIR, batch_size=10, mode='train')
valid_loader = valid_data_loader(DATADIR2, CSVFILE)
for epoch in range(epoch_num):
for batch_id, data in enumerate(train_loader()):
x_data, y_data = https://www.it610.com/article/data
img = fluid.dygraph.to_variable(x_data)
label = fluid.dygraph.to_variable(y_data)
# 运行模型前向计算,得到预测值
logits = model(img)
# 进行loss计算
loss = fluid.layers.sigmoid_cross_entropy_with_logits(logits, label)
avg_loss = fluid.layers.mean(loss)
loss_list.append(avg_loss.numpy())
if batch_id % 10 == 0:
print("epoch: {}, batch_id: {}, loss is: {}".format(epoch, batch_id, avg_loss.numpy()))
log_writer.add_scalar(tag = 'loss', step = itert, value = https://www.it610.com/article/avg_loss.numpy())
itert = itert + 10
plt.plot(loss_list)
# 反向传播,更新权重,清除梯度
avg_loss.backward()
opt.minimize(avg_loss)
model.clear_gradients()model.eval()
accuracies = []
losses = []
for batch_id, data in enumerate(valid_loader()):
x_data, y_data = data
img = fluid.dygraph.to_variable(x_data)
label = fluid.dygraph.to_variable(y_data)
# 运行模型前向计算,得到预测值
logits = model(img)
# 二分类,sigmoid计算后的结果以0.5为阈值分两个类别
# 计算sigmoid后的预测概率,进行loss计算
pred = fluid.layers.sigmoid(logits)
loss = fluid.layers.sigmoid_cross_entropy_with_logits(logits, label)
# 计算预测概率小于0.5的类别
pred2 = pred * (-1.0) + 1.0
# 得到两个类别的预测概率,并沿第一个维度级联
pred = fluid.layers.concat([pred2, pred], axis=1)
acc = fluid.layers.accuracy(pred, fluid.layers.cast(label, dtype='int64'))
accuracies.append(acc.numpy())
losses.append(loss.numpy())
print("[validation] accuracy/loss: {}/{}".format(np.mean(accuracies), np.mean(losses)))
model.train()# save params of model
fluid.save_dygraph(model.state_dict(), 'palm')
# save optimizer state
fluid.save_dygraph(opt.state_dict(), 'palm')# 定义评估过程
def evaluation(model, params_file_path):
with fluid.dygraph.guard(fluid.CUDAPlace(0)):
print('start evaluation .......')
#加载模型参数
model_state_dict, _ = fluid.load_dygraph(params_file_path)
model.load_dict(model_state_dict)model.eval()
eval_loader = data_loader(DATADIR,
batch_size=10, mode='eval')acc_set = []
avg_loss_set = []
for batch_id, data in enumerate(eval_loader()):
x_data, y_data = https://www.it610.com/article/data
img = fluid.dygraph.to_variable(x_data)
label = fluid.dygraph.to_variable(y_data)
y_data = y_data.astype(np.int64)
label_64 = fluid.dygraph.to_variable(y_data)
# 计算预测和精度
prediction, acc = model(img, label_64)
# 计算损失函数值
loss = fluid.layers.sigmoid_cross_entropy_with_logits(prediction, label)
avg_loss = fluid.layers.mean(loss)
acc_set.append(float(acc.numpy()))
avg_loss_set.append(float(avg_loss.numpy()))
# 求平均精度
acc_val_mean = np.array(acc_set).mean()
avg_loss_val_mean = np.array(avg_loss_set).mean()print('loss={}, acc={}'.format(avg_loss_val_mean, acc_val_mean))
# -*- coding:utf-8 -*-# ResNet模型代码
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.base import to_variable# ResNet中使用了BatchNorm层,在卷积层的后面加上BatchNorm以提升数值稳定性
# 定义卷积批归一化块
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None):
"""num_channels, 卷积层的输入通道数
num_filters, 卷积层的输出通道数
stride, 卷积层的步幅
groups, 分组卷积的组数,默认groups=1不使用分组卷积
act, 激活函数类型,默认act=None不使用激活函数
"""
super(ConvBNLayer, self).__init__()# 创建卷积层
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
bias_attr=False)# 创建BatchNorm层
self._batch_norm = BatchNorm(num_filters, act=act)def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y# 定义残差块
# 每个残差块会对输入图片做三次卷积,然后跟输入图片进行短接
# 如果残差块中第三次卷积输出特征图的形状与输入不一致,则对输入图片做1x1卷积,将其输出形状调整成一致
class BottleneckBlock(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True):
super(BottleneckBlock, self).__init__()
# 创建第一个卷积层 1x1
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu')
# 创建第二个卷积层 3x3
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu')
# 创建第三个卷积 1x1,但输出通道数乘以4
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act=None)# 如果conv2的输出跟此残差块的输入数据形状一致,则shortcut=True
# 否则shortcut = False,添加1个1x1的卷积作用在输入数据上,使其形状变成跟conv2一致
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
stride=stride)self.shortcut = shortcutself._num_channels_out = num_filters * 4def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)# 如果shortcut=True,直接将inputs跟conv2的输出相加
# 否则需要对inputs进行一次卷积,将形状调整成跟conv2输出一致
if self.shortcut:
short = inputs
else:
short = self.short(inputs)y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)# 定义ResNet模型
class ResNet(fluid.dygraph.Layer):
def __init__(self, layers=50, class_dim=1):
"""layers, 网络层数,可以是50, 101或者152
class_dim,分类标签的类别数
"""
super(ResNet, self).__init__()
self.layers = layers
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)if layers == 50:
#ResNet50包含多个模块,其中第2到第5个模块分别包含3、4、6、3个残差块
depth = [3, 4, 6, 3]
elif layers == 101:
#ResNet101包含多个模块,其中第2到第5个模块分别包含3、4、23、3个残差块
depth = [3, 4, 23, 3]
elif layers == 152:
#ResNet50包含多个模块,其中第2到第5个模块分别包含3、8、36、3个残差块
depth = [3, 8, 36, 3]# 残差块中使用到的卷积的输出通道数
num_filters = [64, 128, 256, 512]# ResNet的第一个模块,包含1个7x7卷积,后面跟着1个最大池化层
self.conv = ConvBNLayer(
num_channels=3,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
self.pool2d_max = Pool2D(
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')# ResNet的第二到第五个模块c2、c3、c4、c5
self.bottleneck_block_list = []
num_channels = 64
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels=num_channels,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1, # c3、c4、c5将会在第一个残差块使用stride=2;其余所有残差块stride=1
shortcut=shortcut))
num_channels = bottleneck_block._num_channels_out
self.bottleneck_block_list.append(bottleneck_block)
shortcut = True# 在c5的输出特征图上使用全局池化
self.pool2d_avg = Pool2D(pool_size=7, pool_type='avg', global_pooling=True)# stdv用来作为全连接层随机初始化参数的方差
import math
stdv = 1.0 / math.sqrt(2048 * 1.0)# 创建全连接层,输出大小为类别数目
self.out = Linear(input_dim=2048, output_dim=class_dim,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)))def forward(self, inputs):
y = self.conv(inputs)
y = self.pool2d_max(y)
for bottleneck_block in self.bottleneck_block_list:
y = bottleneck_block(y)
y = self.pool2d_avg(y)
y = fluid.layers.reshape(y, [y.shape[0], -1])
y = self.out(y)
return y
with fluid.dygraph.guard(fluid.CUDAPlace(0)):
model = ResNet()train(model)
推荐阅读
- C语言学习|第十一届蓝桥杯省赛 大学B组 C/C++ 第一场
- paddle|动手从头实现LSTM
- pytorch|使用pytorch从头实现多层LSTM
- 推荐系统论文进阶|CTR预估 论文精读(十一)--Deep Interest Evolution Network(DIEN)
- pytorch|YOLOX 阅读笔记
- 前沿论文|论文精读(Neural Architecture Search without Training)
- 联邦学习|【阅读笔记】Towards Efficient and Privacy-preserving Federated Deep Learning
- OpenCV|OpenCV-Python实战(18)——深度学习简介与入门示例
- 深度学习|深度学习笔记总结
- 《繁凡的深度学习笔记》|一文绝对让你完全弄懂信息熵、相对熵、交叉熵的意义《繁凡的深度学习笔记》第 3 章 分类问题与信息论基础(中)(DL笔记整理