目标
- 在本教程中,你将学习如何将图像从一个色彩空间转换到另一个,像BGR?灰色,BGR?HSV等
- 除此之外,我们还将创建一个应用程序,以提取视频中的彩色对象
- 你将学习以下功能:cv.cvtColor,cv.inRange等。
对于颜色转换,我们使用cv函数。cvtColor(input_image, flag),其中flag决定转换的类型。
对于BGR→灰度转换:cv.COLOR_BGR2GRAY。BGR→HSV:cv.COLOR_BGR2HSV。要获取其他标记,只需在Python终端中运行以下命令:
import cv2 as cv
#查看色彩转换代码
flags = [i for i in dir(cv) if i.startswith('COLOR_')]
print( flags )
对象追踪 现在我们知道了如何将BGR图像转换成HSV,我们可以使用它来提取一个有颜色的对象。在HSV中比在BGR颜色空间中更容易表示颜色。在我们的应用程序中,我们将尝试提取一个蓝色的对象。方法如下: - 取视频的每一帧 - 转换从BGR到HSV颜色空间 - 我们对HSV图像设置蓝色范围的阈值 - 现在单独提取蓝色对象,我们可以对图像做任何我们想做的事情。
下面是代码:
import cv2 as cv
import numpy as np
cap = cv.VideoCapture(0)
while(1):
# 读取帧
_, frame = cap.read()
# 转换颜色空间 BGR 到 HSV
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
# 定义HSV中蓝色的范围
lower_blue = np.array([110,50,50])
upper_blue = np.array([130,255,255])
# 设置HSV的阈值使得只取蓝色
mask = cv.inRange(hsv, lower_blue, upper_blue)
# 将掩膜和图像逐像素相加
res = cv.bitwise_and(frame,frame, mask= mask)
cv.imshow('frame',frame)
cv.imshow('mask',mask)
cv.imshow('res',res)
k = cv.waitKey(5) & 0xFF
if k == 27:
break
cv.destroyAllWindows()
结果展示
文章图片
注意 图像中有一些噪点。我们将在后面的章节中看到如何删除它们。 这是对象跟踪中最简单的方法。一旦学习了轮廓的功能,你就可以做很多事情,例如找到该对象的质心并使用它来跟踪对象,仅通过将手移到相机前面以及其他许多有趣的东西就可以绘制图表。
如何找到要追踪的HSV值? 【opencv4|Opencv4 -Python官方教程学习笔记9---改变颜色空间】你可以使用相同的函数cv.cvtColor()。你只需传递你想要的BGR值,而不是传递图像。例如,要查找绿色的HSV值,请在Python终端中尝试以下命令:
import cv2 as cv
import numpy as np
green = np.uint8([[[0,255,0 ]]])
print(green)
hsv_green = cv.cvtColor(green,cv.COLOR_BGR2HSV)
print( hsv_green )
推荐阅读
- opencv|图像处理之椒盐噪声的添加与去除
- OpenCV|【OpenCV 完整例程】89. 带阻滤波器的传递函数
- OpenCV|【OpenCV 完整例程】90. 频率域陷波滤波器
- OpenCV|【OpenCV 完整例程】22. 图像添加非中文文字
- OpenCV|【OpenCV 完整例程】91. 高斯噪声、瑞利噪声、爱尔兰噪声
- 灰度世界算法(Gray World Algorithm)和White Patch Retinex算法
- 安卓开发|通过RenderScript 实现 NV21转Bitmap、两张Bitmap按照透明度混合的工具类
- 基于SLIC的细胞分割与检测
- 科学计算|超像素分割
- MFC|gdal 图像金字塔