V=1/3A(底面积)*h
三棱锥体积公式证明
一个三棱柱中的三个等体积的三棱锥
:
如图,这是一个一般的三棱柱ABC-A'B'C',它的体积可以分为三个等体积的三棱锥,即三棱锥C-A'AB,三棱锥C-A'B'B,三棱锥A'-CB'C'.
因为三棱柱的侧面A'ABB'是平行四边形,所以△A'AB的面积=△A'BB'的面积,即其中三棱锥C-A'AB与三棱锥C-A'B'B的底面积相等,它们两个的顶点都是C,即C到它们底面的距离都相等,所以三棱锥C-A'AB与三棱锥C-A'B'B的体积相等 。而三棱锥C-A'B'B也可以看作是三棱锥A'-BCB',且三棱锥A'-CB'C'与三棱锥A'-BCB'的底面积相等(即△BCB'与△B'C'C的面积相等),且它们两个的顶点都是A',即A'到它们底面的距离都相等,所以三棱锥A'-CB'C'与三棱锥A'-BCB'的体积也相等,故三棱锥C-A'AB,三棱锥C-A'B'B,三棱锥A'-CB'C'的体积都相等,由此可见,一个三棱柱的体积等于三个等体积的三棱锥体积之和,即V三棱锥=1/3S·h.
内切球心
内切球心在顶点与底面重心的连线的距底面1/4处
相关计算:因为正三棱锥底面为正三角形,所以高线位于任意顶点与底边中点连线,又三线合一,所以重心位于高线距顶点2/3处,即可算出顶点与重心的距离,又知正三棱锥边长,即可根据勾股定理算出圆心所在直线(即顶点与底面重心的连线)的长度,即可算出底面与球心的距离(即内切球半径) 。
外接球心
外接球心在顶点与底面重心的连线的距顶点3/4处
相关计算:因为正三棱锥底面为正三角形,所以高线位于任意顶点与底边中点连线,又三线合一,所以重心位于高线距顶点2/3处,即可算出顶点与重心的距离,又知正三棱锥边长,即可根据勾股定理算出圆心所在直线(即顶点与底面重心的连线)的长度,即可算出顶点与球心的距离(即外接球半径) 。
推荐阅读
- 欧洲最大的半岛在北欧 欧洲最大的半岛在哪里
- 佛山三水温泉度假村如何?
- 不止一次怎么形容 表示不止一次的成语是什么
- 废物利用有哪些
- 在四川医学类大学中,川北医学院的实力和影响力怎么样?
- “世界最美已婚女性”大家觉得美吗?
- oppo r17拍照怎么加水印_oppo r17拍照加水印方法教程oppo r17拍照怎么加水印_oppo r17拍照加水印方法教程
- 四川大学华西医学院在国内排名如何?
- 赵沁心和郭晶晶相比,谁才是中国跳水史上最美女神?