硬质合金网站硬质合金网纹摩擦表面如何处理( 二 )


硬质合金网站硬质合金网纹摩擦表面如何处理

文章插图
图1 通过AM制备的WC-Co硬质合金零件
论文提出,相对密度作为WC-Co硬质合金增材制造工艺综合评价指标,主要由孔隙、裂纹等冶金缺陷决定,受原料粉末特性和制备工艺影响 。PBF技术的加热时间短,局部温度高,温度梯度陡峭,熔体熔化、凝固过程需在数百微米级的熔池范围和数百毫秒级的熔化时间内完成,若粉末熔化不完全,则粉末颗粒间的孔隙通常难以消除,进而形成不同类型的孔隙及裂纹 。此外,PBF技术制备WC-Co硬质合金的过程中,WC-Co体系会发生系列物理化学反应,形成WC相和Co基固溶体相(Co-C-W),易导致非平衡相、脱碳相(η相)产生,且样品易发生明显的晶粒不均匀长大,形成多尺度晶粒组织和层状结构,降低力学性能 。因此,基于目前的技术水平,提高相对密度,减少冶金缺陷(如裂纹、孔隙、η相、晶粒不均匀长大)仍然是PBF技术制备WC-Co硬质合金的关键难点 。
图2 SLM工艺制备的硬质合金中的裂纹
FDS技术是生坯冷成形技术与生坯脱脂烧结技术的结合,受原料体系、成形工艺、烧结制度等因素的影响 。该技术制备的WC-Co硬质合金显微组织、晶粒形貌与粉末冶金类似 。但是,生坯的逐线、逐层沉积的成形方式,使得烧结件的冶金缺陷主要表现为沉积道之间的楔形孔,因层与层之间结合不良而产生的裂纹,因不均匀烧结收缩变形而导致的尺寸公差、角度公差等 。此外,FDS与PBF技术的热历程不同,其未采用PBF技术路线的高能束热源,而采用加温加压挤出方式实现喂料的准液态沉积,可以避免PBF技术制备WC-Co硬质合金中普遍存在的开裂、孔隙、η相、非均匀晶粒长大等缺陷 。但是,该技术需采用主要由有机大分子组成的粘合剂制备生坯打印喂料,易在烧结样品中产生脱脂碳残留而形成游离C相,导致力学性能降低,需要严格控制脱脂烧结工艺 。总体上,FDS技术路线可以采用与粉末冶金工艺类似的原料粉末,制备的硬质合金相对密度、显微组织、力学性能与粉末冶金工艺相似,在制备WC-Co硬质合金复杂结构零件方面具有明显的优势和较大的发展潜力 。
结论及展望:
增材制造在制备高性能WC-Co硬质合金复杂结构零件方面具有广阔的发展前景,大大拓展了硬质合金的应用领域 。目前,PBF技术已实现了相对密度达98.8%的WC-Co硬质合金零件的直接制备 。但是,孔隙、开裂现象和控制脆性相是PBF技术需要解决的关键问题 。FDS将生坯3D打印技术与粉末冶金脱脂烧结技术相结合,可以使用与粉末冶金工艺类似原料粉末制备喂料,能够制备近全致密无裂纹的WC-Co硬质合金零件,但存在喂料制备体系复杂,工艺流程较长,易产生脱脂碳残留形成游离C相等挑战 。综合解决上述问题,需要进一步研究PBF技术加工硬质合金的熔体凝固机理和残余应力形成及变形机理,通过成分设计、工艺改进、策略优化等措施消除打印件中的孔隙、裂纹、脆性相等缺陷;同时持续对FDS技术的原料(粘结剂)体系,生坯打印、脱脂和烧结工艺等全工艺链进行优化,以高效制备形状复杂、相对密度高、显微组织和力学性能与粉末冶金相似硬质合金产品 。
黄伯云:中南大学教授,中国工程院院士,发展中国家科学院院士,“十五”国家863计划新材料领域专家委员会主任,中国材料研究学会荣誉理事长 。黄伯云教授主要从事先进材料研究与人才培养,为国家大飞机工程和航空航天装备提供了多种高性能关键材料,培养了一批包括长江学者、杰出青年和上市公司董事长在内的创新领军人才;领导创建了轻质高强材料国防科技重点实验室、粉末冶金国家工程研究中心、国家炭/炭复合材料工程技术研究中心和有色金属先进结构材料与制造协同创新中心(2011计划)等创新平台;获得国家技术发明一等奖等国家科技成果奖4项,国家教学成果奖二等奖2项 。

推荐阅读