基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码
扩展:bloom filter可以看做是对bit-map的扩展
问题实例:
1)已知某个文件内包含一些电话号码,每个号码为8位数字 , 统计不同号码的个数 。
8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可 。
2)2.5亿个整数中找出不重复的整数的个数 , 内存空间不足以容纳这2.5亿个整数 。
将bit-map扩展一下 , 用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上 。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map 。
4.堆
适用范围:海量数据前n大 , 并且n比较?。?堆可以放入内存
基本原理及要点:最大堆求前n?。?最小堆求前n大 。方法,比如求前n?。?我们比较当前元素与最大堆里的最大元素,如果它小于最大元素 , 则应该替换那个最大元素 。这样最后得到的n个元素就是最小的n个 。适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很高 。
扩展:双堆,一个最大堆与一个最小堆结合 , 可以用来维护中位数 。
问题实例:
1)100w个数中找最大的前100个数 。
用一个100个元素大小的最小堆即可 。
5.双层桶划分 ----其实本质上就是【分而治之】的思想,重在“分”的技巧上!
适用范围:第k大,中位数,不重复或重复的数字
基本原理及要点:因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行 。可以通过多次缩?。阒皇且桓隼?。
扩展:
问题实例:
1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数 。
有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数 , 划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了 。也就是说只要有足够的磁盘空间,就可以很方便的解决 。
2).5亿个int找它们的中位数 。
这个例子比上面那个更明显 。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数 。然后第二次扫描我们只统计落在这个区域中的那些数就可以了 。
实际上 , 如果不是int是int64 , 我们可以经过3次这样的划分即可降低到可以接受的程度 。即可以先将int64分成2^24个区域,然后确定区域的第几大数,在将该区域分成2^20个子区域 , 然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20 , 就可以直接利用direct addr table进行统计了 。
6.数据库索引
适用范围:大数据量的增删改查
基本原理及要点:利用数据的设计实现方法,对海量数据的增删改查进行处理 。
扩展:
问题实例:
7.倒排索引(Inverted index)
适用范围:搜索引擎 , 关键字查询
基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射 。
以英文为例,下面是要被索引的文本:
T0 = "it is what it is"
T1 = "what is it"
T2 = "it is a banana"
我们就能得到下面的反向文件索引:
"a": {2}
"banana": {2}
推荐阅读
- gis设备培训总结,gis基础培训
- app开发有分ios端吗,app ios开发
- 映泰41d配什么cpu,映泰h410mh怎么样
- 如何查跨境电商,跨境电商余额查询
- 位置函数Python 位置函数的切线斜率
- oracle创建表序列,创建序列的oracle语句
- 网络连接服务器无响应,网络连接不上服务器
- 直播背景板什么颜色好看,直播背景墙什么颜色比较好
- 乘函数在Python python中的乘积函数