mysql怎么优化条件 mysql优化十大技巧( 四 )


示例表结构:
mysql desc t1;+------------+--------------+------+-----+---------+----------------+| Field| Type| Null | Key | Default | Extra|+------------+--------------+------+-----+---------+----------------+| id| int(11)| NO| PRI | NULL| auto_increment || rank1| int(11)| YES| MUL | NULL||| rank2| int(11)| YES| MUL | NULL||| log_time| datetime| YES| MUL | NULL||| prefix_uid | varchar(100) | YES|| NULL||| desc1| text| YES|| NULL||| rank3| int(11)| YES| MUL | NULL||+------------+--------------+------+-----+---------+----------------+7 rows in set (0.00 sec)
表记录数:
mysql select count(*) from t1;+----------+| count(*) |+----------+|32768 |+----------+1 row in set (0.01 sec)
这里我们两条经典的SQL:
SQL C:
select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;
SQL D:
select * from t1 where rank1 =100and rank2 =100and rank3 =100;
表t1实际上在rank1,rank2,rank3三列上分别有一个二级索引 。
那我们来看SQL C的查询计划 。
显然,没有用到任何索引,扫描的行数为32034,cost为3243.65 。
mysql explainformat=json select * from t1where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {"query_block": {"select_id": 1,"cost_info": {"query_cost": "3243.65"},"table": {"table_name": "t1","access_type": "ALL","possible_keys": ["idx_rank1","idx_rank2","idx_rank3"],"rows_examined_per_scan": 32034,"rows_produced_per_join": 115,"filtered": "0.36","cost_info": {"read_cost": "3232.07","eval_cost": "11.58","prefix_cost": "3243.65","data_read_per_join": "49K"},"used_columns": ["id","rank1","rank2","log_time","prefix_uid","desc1","rank3"],"attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"}}}1 row in set, 1 warning (0.00 sec)
我们加上hint给相同的查询,再次看看查询计划 。
这个时候用到了index_merge,union了三个列 。扫描的行数为1103,cost为441.09,明显比之前的快了好几倍 。
mysql explainformat=json select /*+ index_merge(t1) */ * from t1where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {"query_block": {"select_id": 1,"cost_info": {"query_cost": "441.09"},"table": {"table_name": "t1","access_type": "index_merge","possible_keys": ["idx_rank1","idx_rank2","idx_rank3"],"key": "union(idx_rank1,idx_rank2,idx_rank3)","key_length": "5,5,5","rows_examined_per_scan": 1103,"rows_produced_per_join": 1103,"filtered": "100.00","cost_info": {"read_cost": "330.79","eval_cost": "110.30","prefix_cost": "441.09","data_read_per_join": "473K"},"used_columns": ["id","rank1","rank2","log_time","prefix_uid","desc1","rank3"],"attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"}}}1 row in set, 1 warning (0.00 sec)
我们再看下SQL D的计划:
不加HINT,
mysql explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {"query_block": {"select_id": 1,"cost_info": {"query_cost": "534.34"},"table": {"table_name": "t1","access_type": "ref","possible_keys": ["idx_rank1","idx_rank2","idx_rank3"],"key": "idx_rank1","used_key_parts": ["rank1"],"key_length": "5","ref": ["const"],"rows_examined_per_scan": 555,"rows_produced_per_join": 0,"filtered": "0.07","cost_info": {"read_cost": "478.84","eval_cost": "0.04","prefix_cost": "534.34","data_read_per_join": "176"},"used_columns": ["id","rank1","rank2","log_time","prefix_uid","desc1","rank3"],"attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))"}}}1 row in set, 1 warning (0.00 sec)
加了HINT , 
mysql explain format=json select /*+ index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {"query_block": {"select_id": 1,"cost_info": {"query_cost": "5.23"},"table": {"table_name": "t1","access_type": "index_merge","possible_keys": ["idx_rank1","idx_rank2","idx_rank3"],"key": "intersect(idx_rank1,idx_rank2,idx_rank3)","key_length": "5,5,5","rows_examined_per_scan": 1,"rows_produced_per_join": 1,"filtered": "100.00","cost_info": {"read_cost": "5.13","eval_cost": "0.10","prefix_cost": "5.23","data_read_per_join": "440"},"used_columns": ["id","rank1","rank2","log_time","prefix_uid","desc1","rank3"],"attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))"}}}1 row in set, 1 warning (0.00 sec)

推荐阅读