python函数误差 python绘制误差棒图

Python运算显示结果问题我的也一样,不纠结这个 。反正使用时指定精度就行了 。
帮你试了,必须写成这样才行 。二进制表示10进制的小数,10进制里很正常的
谈谈关于Python里面小数点精度控制的问题
十进制整数不会变成二进制小数,但十进制很短的小数的是可能变成二进制很长小数的 。
例如0.54转变成二进制是:
0.54=0.10001010001111010111000010100011110101110000101001B
还有一些十进制下一两位小数,在二进制下无限循环小数的,只能取近似值 。
Python科学计算——任意波形拟合任意波形的生成(geneartion of arbitrary waveform) 在商业 , 军事等领域都有着重要的应用,诸如空间光通信 (free-space optics communication), 高速信号处理 (high-speed signal processing),雷达 (radar) 等 。在任意波形生成后, 如何评估生成的任意波形 成为另外一个重要的话题 。
假设有一组实验数据 , 已知他们之间的函数关系:y=f(x),通过这些信息,需要确定函数中的一些参数项 。例如,f 是一个线型函数 f(x)=k*x+b,那么参数 k 和 b 就是需要确定的值 。如果这些参数用 p 表示的话,那么就需要找到一组 p 值使得如下公式中的 S 函数最?。?
这种算法被称之为 最小二乘拟合(least-square fitting) 。scipy 中的子函数库 optimize 已经提供实现最小二乘拟合算法的函数leastsq。下面是 leastsq 函数导入的方式:
scipy.optimize.leastsq 使用方法
在Python科学计算——Numpy.genfromtxt一文中,使用numpy.genfromtxt对数字示波器采集的三角波数据导入进行了介绍,今天,就以4GHz三角波波形的拟合为案例介绍任意波形的拟合方法 。
在Python科学计算——如何构建模型?一文中,讨论了如何构建三角波模型 。在标准三角波波形的基础上添加了 横向,纵向的平移和伸缩特征参数,最后添加了 噪声参数 模拟了三角波幅度参差不齐的随机性特征 。但在波形拟合时,并不是所有的特征参数都要纳入考量 , 例如,噪声参数应是 波形生成系统 的固有特征,正因为它的存在使得产生的波形存在瑕疵,因此,在进行波形拟合并评估时 , 不应将噪声参数纳入考量,最终模型如下:
在调用 scipy.optimize.leastsq 函数时 , 需要构建误差函数:
有时候,为了使图片有更好的效果,需要对数据进行一些处理:
leastsq 调用方式如下:
合理的设置 p0 可以减少程序运行时间,因此,可以在运行一次程序后,用拟合后的相应数据对 p0 进行修正 。
在对波形进行拟合后,调用 pylab 对拟合前后的数据进行可视化:
均方根误差(root mean square error) 是一个很好的评判标准,它是观测值与真值偏差的平方和观测次数n比值的平方根,在实际测量中,观测次数n总是有限的 , 真值只能用最可信赖(最佳)值来代替.方根误差对一组测量中的特大或特小误差反映非常敏感 , 所以,均方根误差能够很好地反映出测量的精密度 。
RMSE 用程序实现如下:
拟合效果,模型参数输出:
leastsq 函数适用于任何波形的拟合,下面就来介绍一些常用的其他波形:
python 求lna满足给定误差的值需要有特定的题才能求的哦 。
拓展:
模型方差
模型的方差是模型在拟合不同的训练数据时性能的变化大小 。它反映特定数据对模型的影响 。
“方差指的是,用不同训练数据进行模型评估时,模型表现的变化程度 。”
——《统计学习及其在R中的应用》2014年版,第34页
一个高方差的模型在训练数据集发生细小变化时预测结果会发生很大变化 。相反,对于低方差的模型,训练数据发生或大或小的改变时,预测结果的变化都很小 。

推荐阅读