go语言+解析xml go语言源码解析

Go语言处理JSon字段完整的一条json语句中 , 字段都为字符串类型 , 值为基本数据类型:整形、布尔型、字符串等
在解析json时,通常要用到encoding/json这个包
json.Unmarshal()方法用作将一个json类型的字节流,序列化成指定的形式,可以为map,也可以为自定义的结构体,需要注意的是,希望被转换的格式需要以指针类型传入
运行结果如下
将map或者struct打包成json,用的是json中的marshal方法,返回的是一个字节数组和一个错误类型
打印结果
Golang项目中引入yaml.v2配置文件 在Go语言项目中 , 常用的配置文件yaml、toml、json、xml、ini几种,因为本章主要讲解yaml配置文件的使用方法,其他几种配置文件在这里就不展开了介绍了,大家有兴趣可以自行百度 。
yaml文件的语法网上有很多的教程,大家自行百度,这里也推荐两个链接:
yaml文件解析使用的是github上第三方开源框架 gopkg.in/yaml.v2,下面详细介绍安装和使用的方法:
参考链接:
go语言json处理json是一种经常使用的数据格式,下面总结一下json的使用
json与struct转换的话struct的属性必须首字母大写 。
当用的多go语言+解析xml了就会发现一个致命的问题go语言+解析xml:go默认会将特殊字符转义采用以下方法可以解决:
处理方法1
处理方法2
不管是属性组成的还是Tag组成的json字符串,都可以正常的解析
tag:
json:"-"// 表示不进行序列化
IsOnSalebooljson:"is_on_sale,string" //序列化后转成string
ProductID int64json:"product_id,omitempty"//为零值时忽略
序列化或者反序列化时可以指定类型,支持string,number和boolean
IsOnSalebooljson:"is_on_sale,string"
注意:
正确使用第一个,第二个回报错
go语言string之Buffer与Builder操作字符串离不开字符串的拼接go语言+解析xml,但是Go中string是只读类型,大量字符串的拼接会造成性能问题 。
拼接字符串,无外乎四种方式,采用“+” , “fmt.Sprintf()”,"bytes.Buffer","strings.Builder"
上面go语言+解析xml我们创建10万字符串拼接的测试,可以发现"bytes.Buffer","strings.Builder"的性能最好,约是“+”的1000倍级别 。
这是由于string是不可修改的,所以在使用“+”进行拼接字符串,每次都会产生申请空间,拼接 , 复制等操作,数据量大的情况下非常消耗资源和性能 。而采用Buffer等方式,都是预先计算拼接字符串数组的总长度(如果可以知道长度),申请空间,底层是slice数组,可以以append的形式向后进行追加 。最后在转换为字符串 。这申请go语言+解析xml了不断申请空间的操作,也减少了空间的使用和拷贝的次数,自然性能也高不少 。
bytes.buffer是一个缓冲byte类型的缓冲器存放着都是byte
是一个变长的 buffer,具有 Read 和Write 方法 。Buffer 的 零值 是一个 空的 buffer,但是可以使用,底层就是一个 []byte,字节切片 。
向Buffer中写数据,可以看出Buffer中有个Grow函数用于对切片进行扩容 。
从Buffer中读取数据
strings.Builder的方法和bytes.Buffer的方法的命名几乎一致 。
但实现并不一致 , Builder的Write方法直接将字符拼接slice数组后 。
其没有提供read方法,但提供了strings.Reader方式
Reader 结构:
Buffer:
Builder:
可以看出Buffer和Builder底层都是采用[]byte数组进行装载数据 。
先来说说Buffer:
创建好Buffer是一个empty的,off 用于指向读写的尾部 。
在写的时候,先判断当前写入字符串长度是否大于Buffer的容量,如果大于就调用grow进行扩容,扩容申请的长度为当前写入字符串的长度 。如果当前写入字符串长度小于最小字节长度64,直接创建64长度的[]byte数组 。如果申请的长度小于二分之一总容量减去当前字符总长度,说明存在很大一部分被使用但已读,可以将未读的数据滑动到数组头 。如果容量不足,扩展2*c + n。

推荐阅读