聚类算法之K均值算法(k-means)的Python实现K-means算法是硬聚类算法 , 是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数 , 利用函数求极值的方法得到迭代运算的调整规则 。K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类 , 使得评价指标J最小 。算法采用误差平方和准则函数作为聚类准则函数 。
通常,人们根据样本间的某种距离或者相似性来定义聚类,即把相似的(或距离近的)样本聚为同一类,而把不相似的(或距离远的)样本归在其他类 。
所谓聚类问题,就是给定一个元素集合D,其中每个元素具有n个可观察属性,使用某种算法将D划分成k个子集,要求每个子集内部的元素之间相异度尽可能低,而不同子集的元素相异度尽可能高 。其中每个子集叫做一个簇 。
k-means算法是一种很常见的聚类算法,它的基本思想是:通过迭代寻找k个聚类的一种划分方案,使得用这k个聚类的均值来代表相应各类样本时所得的总体误差最小 。
看起来还不错
分析一个公司的客户分类,这样可以对不同的客户使用不同的商业策略,或是电子商务中分析商品相似度,归类商品,从而可以使用一些不同的销售策略 , 等等 。
建议收藏!10 种 Python 聚类算法完整操作示例 聚类或聚类分析是无监督学习问题 。它通常被用作数据分析技术,用于发现数据中的有趣模式 , 例如基于其行为的客户群 。有许多聚类算法可供选择,对于所有情况,没有单一的最佳聚类算法 。相反,最好探索一系列聚类算法以及每种算法的不同配置 。在本教程中,你将发现如何在 python 中安装和使用顶级聚类算法 。完成本教程后,你将知道:
聚类分析,即聚类 , 是一项无监督的机器学习任务 。它包括自动发现数据中的自然分组 。与监督学习(类似预测建模)不同,聚类算法只解释输入数据,并在特征空间中找到自然组或群集 。
群集通常是特征空间中的密度区域,其中来自域的示例(观测或数据行)比其他群集更接近群集 。群集可以具有作为样本或点特征空间的中心(质心),并且可以具有边界或范围 。
聚类可以作为数据分析活动提供帮助,以便了解更多关于问题域的信息,即所谓的模式发现或知识发现 。例如:
聚类还可用作特征工程的类型,其中现有的和新的示例可被映射并标记为属于数据中所标识的群集之一 。虽然确实存在许多特定于群集的定量措施 , 但是对所识别的群集的评估是主观的,并且可能需要领域专家 。通常,聚类算法在人工合成数据集上与预先定义的群集进行学术比较,预计算法会发现这些群集 。
有许多类型的聚类算法 。许多算法在特征空间中的示例之间使用相似度或距离度量,以发现密集的观测区域 。因此,在使用聚类算法之前 , 扩展数据通常是良好的实践 。
一些聚类算法要求您指定或猜测数据中要发现的群集的数量,而另一些算法要求指定观测之间的最小距离,其中示例可以被视为“关闭”或“连接” 。因此,聚类分析是一个迭代过程,在该过程中,对所识别的群集的主观评估被反馈回算法配置的改变中 , 直到达到期望的或适当的结果 。scikit-learn 库提供了一套不同的聚类算法供选择 。下面列出了10种比较流行的算法:
每个算法都提供了一种不同的方法来应对数据中发现自然组的挑战 。没有最好的聚类算法,也没有简单的方法来找到最好的算法为您的数据没有使用控制实验 。在本教程中,我们将回顾如何使用来自 scikit-learn 库的这10个流行的聚类算法中的每一个 。这些示例将为您复制粘贴示例并在自己的数据上测试方法提供基础 。我们不会深入研究算法如何工作的理论,也不会直接比较它们 。让我们深入研究一下 。
推荐阅读
- 区块链地推,区块链怎么推广话术
- postgre转义,post词
- 语言翻译下载,语言翻译器下载
- 纸盘转转转小班益智游戏,纸盘转转转小班益智游戏教案
- linux命令怎么返回 linux如何返回
- gis电气设备最高电压等级,高压电气设备电压等级为在1000v以上
- 即时战略中国游戏市场,即时战略类游戏鼻祖
- 代理推广平台有哪些公司,做代理可以在哪个平台推广
- vb.net打开指定文本 vb打开指定文件