小明家长从老师那得知物理的全班平均成绩为40分,标准差为10 , 而语文的平均成绩为92分,标准差为4 。分别计算两科成绩的标准分数:
物理:标准分数 = (60-40)/10 = 2
语文:标准分数 = (85-95)/4 = -2.5
从计算结果来看 , 说明这次考试小明的物理成绩在全部同学中算是考得很不错的,而语文考得很差 。
指数分布可能容易和前面的泊松分布混淆,泊松分布强调的是某段时间内随机事件发生的次数的概率分布,而指数分布说的是 随机事件发生的时间间隔 的概率分布 。比如一班地铁进站的间隔时间 。如果随机变量X的概率密度为:
则称X服从指数分布 , 其中的参数λ0 。对应的分布函数 为:
均匀分布的期望值和方差 分别为:
使用Python绘制指数分布的概率分布图:
均匀分布有两种,分为 离散型均匀分布和连续型均匀分布。其中离散型均匀分布最常见的例子就是抛掷骰子啦 。抛掷骰子出现的点数就是一个离散型随机变量,点数可能有1,2,3,4 , 5 , 6 。每个数出现的概率都是1/6 。
设连续型随机变量X具有概率密度函数:
则称X服从区间(a,b)上的均匀分布 。X在等长度的子区间内取值的概率相同 。对应的分布函数为:
f(x)和F(x)的图形分别如下图所示:
均匀分布的期望值和方差 分别为:
如何在Python中实现这五类强大的概率分布R编程语言已经成为统计分析中的事实标准 。但在这篇文章中,我将告诉你在Python中实现统计学概念会是如此容易 。我要使用Python实现一些离散和连续的概率分布 。虽然我不会讨论这些分布的数学细节 , 但我会以链接的方式给你一些学习这些统计学概念的好资料 。在讨论这些概率分布之前 , 我想简单说说什么是随机变量(random variable) 。随机变量是对一次试验结果的量化 。
举个例子 , 一个表示抛硬币结果的随机变量可以表示成
Python
1
2
X = {1 如果正面朝上,
2 如果反面朝上}
随机变量是一个变量,它取值于一组可能的值(离散或连续的),并服从某种随机性 。随机变量的每个可能取值的都与一个概率相关联 。随机变量的所有可能取值和与之相关联的概率就被称为概率分布(probability distributrion) 。
我鼓励大家仔细研究一下scipy.stats模块 。
概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布 。
离散概率分布也称为概率质量函数(probability mass function) 。离散概率分布的例子有伯努利分布(Bernoulli distribution)、二项分布(binomial distribution)、泊松分布(Poisson distribution)和几何分布(geometric distribution)等 。
连续概率分布也称为概率密度函数(probability density function),它们是具有连续取值(例如一条实线上的值)的函数 。正态分布(normal distribution)、指数分布(exponential distribution)和β分布(beta distribution)等都属于连续概率分布 。
若想了解更多关于离散和连续随机变量的知识,你可以观看可汗学院关于概率分布的视频 。
二项分布(Binomial Distribution)
服从二项分布的随机变量X表示在n个独立的是/非试验中成功的次数,其中每次试验的成功概率为p 。
E(X) = np, Var(X) = np(1?p)
如果你想知道每个函数的原理,你可以在IPython笔记本中使用help file命令 。E(X)表示分布的期望或平均值 。
键入stats.binom?了解二项分布函数binom的更多信息 。
二项分布的例子:抛掷10次硬币,恰好两次正面朝上的概率是多少?
推荐阅读
- 硬盘盒子怎么安装,硬盘盒子怎么安装硬盘
- 家里的路由器怎么不能复位,家里的路由器怎么不能复位了
- 虚拟主机面板whmcs,虚拟主机面板进不去
- 韩国网络游戏射击游戏大全,韩国网络游戏射击游戏大全手机版
- 包含vbnet时钟的词条
- sqlserver所有表记录,sql server操作数据库记录
- 米家怎么连两个路由器,米家怎么连接新路由器
- 鱼峰区如何做智能网络营销,智能营销推广
- 井字棋代码java 井字棋代码怎样改成五子棋代码