python求损失函数的简单介绍

正则化项L1和L2的直观理解及L1不可导处理正则化(Regularization)
机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作 ?1-norm 和 ?2-norm  , 中文称作L1正则化和L2正则化,或者L1范数和L2范数。
L1正则化和L2正则化可以看做是损失函数的惩罚项 。所谓『惩罚』是指对损失函数中的某些参数做一些限制 。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归) 。下图是Python中Lasso回归的损失函数,式中加号后面一项α||w||1即为L1正则化项 。
下图是Python中Ridge回归的损失函数,式中加号后面一项α||w||22即为L2正则化项 。
一般回归分析中回归w表示特征的系数,从上式可以看到正则化项是对系数做了处理(限制) 。L1正则化和L2正则化的说明如下:
L1正则化是指权值向量w中各个元素的绝对值之和,通常表示为||w||1
L2正则化是指权值向量w中各个元素的平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号),通常表示为||w||2
一般都会在正则化项之前添加一个系数 , Python中用α表示 , 一些文章也用λ表示 。这个系数需要用户指定 。
那添加L1和L2正则化有什么用? 下面是L1正则化和L2正则化的作用,这些表述可以在很多文章中找到 。
L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型 , 可以用于特征选择
L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合
稀疏模型与特征选择
上面提到L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择 。为什么要生成一个稀疏矩阵?
稀疏矩阵指的是很多元素为0,只有少数元素是非零值的矩阵,即得到的线性回归模型的大部分系数都是0.
通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征 , 那么特征数量会达到上万个(bigram) 。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型 , 表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,或者贡献微?。ㄒ蛭乔懊娴南凳?或者是很小的值,即使去掉对模型也没有什么影响) , 此时我们就可以只关注系数是非零值的特征 。这就是稀疏模型与特征选择的关系 。
L1和L2正则化的直观理解
这部分内容将解释为什么L1正则化可以产生稀疏模型(L1是怎么让系数等于零的) , 以及为什么L2正则化可以防止过拟合。
L1正则化和特征选择
假设有如下带L1正则化的损失函数:
J=J0+α∑w|w|(1)
其中J0是原始的损失函数,加号后面的一项是L1正则化项,α是正则化系数 。注意到L1正则化是权值的 绝对值之和 ,J是带有绝对值符号的函数 , 因此J是不完全可微的 。机器学习的任务就是要通过一些方法(比如梯度下降)求出损失函数的最小值 。当我们在原始损失函数J0后添加L1正则化项时,相当于对J0做了一个约束 。令L=α∑w|w| , 则J=J0+L,此时我们的任务变成 在L约束下求出J0取最小值的解。考虑二维的情况,即只有两个权值w1和w2,此时L=|w1|+|w2|对于梯度下降法,求解J0的过程可以画出等值线,同时L1正则化的函数L也可以在w1w2的二维平面上画出来 。如下图:
【python求损失函数的简单介绍】 图1L1正则化
图中等值线是J0的等值线,黑色方形是L函数的图形 。在图中 , 当J0等值线与L图形首次相交的地方就是最优解 。上图中J0与L在L的一个顶点处相交,这个顶点就是最优解 。注意到这个顶点的值是(w1,w2)=(0,w) 。可以直观想象,因为L函数有很多『突出的角』(二维情况下四个,多维情况下更多),J0与这些角接触的机率会远大于与L其它部位接触的机率,而在这些角上,会有很多权值等于0,这就是为什么L1正则化可以产生稀疏模型,进而可以用于特征选择 。

推荐阅读