python小波核函数 scipy小波变换

2020-05-22 第十三章 支持向量机模型(python)SVM 是 Support Vector Machine python小波核函数的简称python小波核函数,它的中文名为支持向量机python小波核函数,属于一种有监督的机器学习算法 , 可用于离散因变量的分类和连续因变量的预测 。通常情况下,该算法相对于其他单一的分类算法(如 Logistic 回归、决策树、朴素贝叶斯、 KNN 等)会有更好的预测准确率,主要是因为它可以将低维线性不可分的空间转换为高维的线性可分空间 。
“分割带”代表了模型划分样本点的能力或可信度,“分割带”越宽,说明模型能够将样本点划分得越清晰,进而保证模型泛化能力越强,分类的可信度越高python小波核函数;反之,“分割带”越窄,说明模型的准确率越容易受到异常点的影响,进而理解为模型的预测能力越弱,分类的可信度越低 。
线性可分的所对应的函数间隔满足的条件,故就等于。所以,可以将目标函数等价为如下的表达式python小波核函数:
假设存在一个需要最小化的目标函数,并且该目标函数同时受到的约束 。如需得到最优化的解,则需要利用拉格朗日对偶性将原始的最优化问题转换为对偶问题,即:
分割面的求解
分割面的表达式
对于非线性SVM模型而言,需要经过两个步骤,一个是将原始空间中的样本点映射到高维的新空间中 , 另一个是在新空间中寻找一个用于识别各类别样本点线性“超平面” 。
假设原始空间中的样本点为,将样本通过某种转换映射到高维空间中 , 则非线性SVM模型的目标函数可以表示为:
其中,内积可以利用核函数替换,即。对于上式而言 , 同样需要计算最优的拉格朗日乘积,进而可以得到线性“超平面”与的值:
假设原始空间中的两个样本点为 , 在其扩展到高维空间后,它们的内积如果等于样本点在原始空间中某个函数的输出 , 那么该函数就称为核函数 。
线性核函数的表达式为,故对应的分割“超平面”为:
多项式核函数的表达式为 , 故对应的分割“超平面”为:
高斯核函数的表达式为,故对应的分割“超平面”为:
Sigmoid 核函数的表达式为,故对应的分割“超平面”为:
在实际应用中 ,  SVM 模型对核函数的选择是非常敏感的,所以需要通过先验的领域知识或者交叉验证的方法选出合理的核函数 。大多数情况下,选择高斯核函数是一种相对偷懒而有效的方法,因为高斯核是一种指数函数,它的泰勒展开式可以是无穷维的,即相当于把原始样本点映射到高维空间中 。
output_13_0.png
python的seaborn.kdeplot有什么用kde(kernel density estimation)是核密度估计 。核的作用是根据离散采样,估计连续密度分布 。
如果原始采样是《阴阳师》里的式神 , 那么kernel(核函数)就相当于御魂 。
假设现在有一系列离散变量X = [4, 5, 5, 6, 12, 14, 15, 15, 16, 17],可见5和15的概率密度应该要高一些 , 但具体有多高呢?有没有三四层楼那么高,有没有华莱士高?如果要估计的是没有出现过的3呢?这就要自己判断了 。
核函数就是给空间的每个离散点都套上一个连续分布 。最简单的核函数是Parzen窗,类似一个方波:
这时候单个离散点就可以变成区间,空间或者高维空间下的超立方,实质上是进行了升维 。
设h=4,则3的概率密度为:
(只有4对应的核函数为1 , 其他皆为0)
kernel是非负实值对称可积函数 , 表示为K,且一本满足:
这样才能保证cdf仍为1 。

推荐阅读