锅炉为什么有氮氧化物排放,怎么修复与排查方法?

锅炉烟气中氮氧含量的高低与燃烧温度、炉内氧含量、煤的氮含量、燃料条件等因素有关 。
当炉温达到1500℃以上时 , 空气中的氮气与氧气发生化学反应 , 氮氧化物的产量将占总产量的15%~25% 。
燃料中所含氮化合物在燃烧过程中被分解氧化 , 约占总氮氧化物生成量的80%~-909% 。
快速nox只发生在燃烧丰富的情况下(高碳氢化合物CH,相对较低的氧浓度),一般占nox总产量的5%以下 。
扩展资料:
氮氧化物(NOₓ)种类很多,常见的包括一氧化二氮₂O(N),一氧化氮(NO)、一氧化氮(没有₂),三氧化二氮₃₂O(N),四氧化二氮₄₂O(N)和五氧化二氮₅₂O(N) 。加上一氧化氮二聚体(N₂O₂) , 叠氮化亚硝酰₄O(N),三个氮氧化物(NO₃) 。
自然的排放没有ₓ主要从土壤有机质的分解和大海 , 属于氮循环的性质 。人为排放的NO , 主要来自化石燃料燃烧过程,如汽车、飞机、内燃机和工业窑炉 。
它还来自于硝酸的生产和使用,如氮肥厂、有机中间厂、有色金属和黑色金属冶炼厂等 。
据估计在80年代初,全世界每年排放到大气中由于人类活动没有ₓ约5300万吨 。没有ₓ对环境的破坏是伟大的,它是酸雨形成的主要材料之一,也是重要的材料大气光化学烟雾的形成和消费O₃是一个重要因素 。
条件下的高温燃烧,没有ₓ主要存在的形式,没有约占95%的原始ₓ排放 。但是,不容易与空气中的氧气发生反应在大气中 , 生成没有₂,所以大气中的氮氧化物通常没有₂的形式存在 。

锅炉为什么有氮氧化物排放,怎么修复与排查方法?

文章插图
没有,没有₂光化学反应的空气,相互转换和平衡 。在较大的温度或云的存在 , 没有进一步₂酸雨形成的水分子在第二个要点——酸硝酸(HNO₃) 。
在催化剂的存在,如与合适的气象条件,没有₂硝酸加速 。尤其是当没有₂₂,同时,彼此可以催化,形成硝酸更快 。
参考资料:百度百科–氮氧化物
参考资料:百度百科–快速型氮氧化物
关于锅炉烟气氮氧化物升高原因分析及
预控措施
一、 NOx的形成与分类
氮氧化物:NO , NO2,N2O、N2O3,N2O4,N2O5等,但在燃烧过程中生成的氮氧化物 , 几乎全是NO和NO2 。通常把这两种氮的氧化物称为NOx
1、热力型NOx(Thermal NOx),它是空气中的氮气在高温下(1000℃-1400℃以上)氧化而生成的NOx
2、快速型NOx(Prompt NOx),它是燃烧时空气中的氮和燃料中的碳氢离子团如CH等反应生成的NOx
3、燃料型NOx(Fuel NOx),它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOx
二、NOx的升高的分析
1、煤粉燃烧中各种类型NOx的生成量和炉膛温度的关系
热力型NOx是燃烧时空气中的氮(N2)和氧(O2)在高温下生成的NO和NO2
O2十M←→2O十M
O十N2←→NO十N
N十O2←→NO十O
因此,高温下生成NO和NOx的总反应式为
N2十O2←→2NO
NO十1/2O2←→NO2
2、煤粉炉的NOx排放值和燃烧方式及锅炉容量的关系
1)若燃料N全部转变为燃料NOx,则燃料中1%N燃烧生成NOx为1300ppm , 实际上燃料N只是一部分转变为NOx,取转变率为25%,则燃料NOx为325ppm,即650mg/Nm3 。
2)热力NOx一般占总NOx的20%~30%,现取25%,即为217 mg/Nm3 。因此,总的NOx生成量为867 mg/m3 。
3)若锅炉采用了低NOx燃烧器、顶部燃尽风等分级燃烧、以及提高煤粉细度和低α措施等,炉内脱硝率可达ηNOx≥50%,因此预计NOx排放浓度≤433mg/Nm3 。

锅炉为什么有氮氧化物排放,怎么修复与排查方法?

文章插图
N2和O2生成NO的平衡常数Kp
当温度低于l000K时Kp值非常?。簿褪荖O的分压力(浓度)很小
温度和N2/O2(ppm)初始比对NO平衡浓度的影响
40N2/O2(ppm)是N2和O2之比为40:1的情况 , 这大致相当于过量空气系数为1.1时的烟气
【锅炉为什么有氮氧化物排放,怎么修复与排查方法?】NO氧化成NO2反应的平衡常数Kp
由表可以看出Kp随温度的升高反而减?。虼说臀掠欣贜O氧化成NO2 。当温度升高超过1000℃时,NO2大量分解为NO,这时NO2的生成量比NO低得多
煤炭中的氮含量一般在0.5%-2.5%左右,它们以氮原子的状态与各种碳氢化合物结合成氮的环状化合物或链状化合物,如喹啉(C6H5N)和芳香胺(C6H5NH2)等
当燃料中氮的含量超过0.1%时,所生成的NO在烟气中的浓度将会超过130ppm 。煤燃烧时约75%-90%的NOx是燃料型NOx 。因此,燃料型NOx是煤燃烧时产生的NOx的主要来源 。
3、过量空气系数对燃料N转化为挥发分N比例的影响
热解温度对燃料N转化为煤粉细度对燃料N转化为挥发分N比例的影响挥发分N比例的影响
综合上述图表及所查资料得出,锅炉氮氧化合物升高的原因主要有下述几点
1、锅炉氮氧化合物升高主要和炉膛温度有关,温度越高生成的氮氧化合物越高,在锅炉运行当中,改变磨煤机运行方式如:B、C、D磨运行,炉膛火焰中心就会升高 , 炉膛下部吸热量减少,炉膛温度升高,产生氮氧化合物就会升高 。
2、锅炉氮氧化合物升高与锅炉过量空气系数有关,综合现在锅炉氧量2.0%-3.0%得出锅炉过量空气系数a
如下所示:
公式a=21/21-Q2
锅炉氧量2.0%所对应下的过量空气系数1.10
锅炉氧量2.2%所对应下的过量空气系数1.11
锅炉氧量2.4%所对应下的过量空气系数1.12
锅炉氧量2.6%所对应下的过量空气系数1.14
锅炉氧量2.8%所对应下的过量空气系数1.15
锅炉氧量3.0%所对应下的过量空气系数1.16
锅炉氧量3.5%所对应下的过量空气系数1.2
通过对过量空气系数的计算,锅炉氧量越高的,燃烧所产生的烟气量就相应增加,锅炉所产出的氮氧化合物就会增加,但锅炉氧量偏低会造成,煤粉燃烧不完全,锅炉化学和机械不完全燃烧热损失升高 。
3、煤粉细度对锅炉氮氧化合物的影响
锅炉在运行当中及时调整磨煤机煤粉细度,在锅炉未改变燃烧方式的前提下,煤粉细度的粗细也会影响锅炉氮氧化合物升高和降低 。
二、锅炉降低氮氧化合物的措施
1、在燃用挥发分较高的烟煤时,燃料型NOX含量较多,快速型NOX极少 。燃料型NOX是空气中的氧与煤中氮元素热解产物发生反应生成NOX,燃料中氮并非全部转变为NOX,它存在一个转换率,降低此转换率,控制NOX排放总量,可采取减少燃烧的过量空气系数在运行当中控制锅炉氧量在2.0%-2.5%控制锅炉氮氧化合物升高 。
2、控制燃料与空气的前期混合,通过对降低磨煤机出口一次风速,控制煤粉进入炉膛着火时间 , 现磨煤机A磨风量60t/h、B磨55-58t/h、C磨45t/h,D磨运行时45t/h,逐步降低磨煤机一次风量,通过对降低磨煤机出口一次风速,控制煤粉进入炉膛着火时间,加强配风通过一、二次风的调整 。
3、通过调整磨煤机出口挡板来控制磨煤机煤粉细度,找出煤粉细度的粗细在炉内燃烧产生氮氧化合物的最佳煤粉细度 , 来控制锅炉氮氧化合物 。
4、提高入炉的局部燃料浓度 , 在锅炉D磨运行时,对锅炉配风进行调整,降低火焰中心位置,降低D磨煤机的给煤量,在调整时尽量调整其他磨煤机的煤量 , 避免大幅度调整D磨煤机的给煤量,造成锅炉氧量大幅度波动,控制炉膛负压在-30Pa至-50Pa之间,加强煤粉在炉燃烧时间,防止煤粉燃烧不充分,火焰中心上移 , 造成炉膛出口烟温高,造成锅炉氮氧化合物升高 。
5、改变配风方式:将炉内火焰采用倒三角的配风方式 , 将从主燃烧器供入炉膛的空气量减少(相当于理论空气量的80%),使燃料先在缺氧的富燃料燃烧条件下燃烧,降低燃烧区内的燃烧速度和温度水平,延迟燃烧过程,而且在还原性气氛中降低了生成NOX的反应率,抑制了NOX在这一燃烧中的生成量,第二阶段燃烬阶段,为了完成全部燃烧过程,完全燃烧所需的其余空气则通过布置在主燃烧器上方的二次风喷口送入炉膛,与朱主燃烧所产生的烟气混合,完成全部燃烧过程 。
燃煤锅炉在燃烧过程中生成氮氧化物的途径有三个:
1、热力型
是空气中的氮在高温下氧化生成氮氧化物 。
2、快速型
空气中的氮和燃料中的碳氢离子团(-HC)等反应生成的氮氧化物 。
3、燃料型
燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化生成氮氧化物 , 燃煤锅炉产生的氮氧化物以燃料型为主 , 热力型次之,快速性最少 。
扩展资料:
目前市面上在用锅炉想实现低氮改造,主要有三种措施:
1、更换锅炉
宜选择从源头控制氮氧化物生成的锅炉 , 目前市面上技术最先进最成熟的是采用全预混燃烧的冷凝燃气锅炉,通过多功能燃气/空气比例控制阀 , 将燃气和空气按照比例充分混合后,再燃烧 。
2、更换燃烧器
锅炉燃烧器的更换、改造和调试工作,以及由此产生的对锅炉安全性能的影响,应由燃烧器制造商或其授权的单位负责 。
3、在用锅炉进行烟气处理
将已经生成的氮氧化物通过某种手段再还原为氮气,目前主要有燃料再燃,选择性催化还原法、非选择性催化还原法 。但在实际监测中 , 氮氧化物排放可控性较差 。
参考资料:百度百科-氮氧化物
OK,关于锅炉为什么有氮氧化物排放,怎么修复与排查方法?和锅炉氮氧化物超标的原因和处理措施的内容到此结束了,希望对大家有所帮助 。

    推荐阅读