php高并发大数据 php大数据高并发处理

php解决高并发?php
2 //优化方案1:将库存字段number字段设为unsigned , 当库存为0时,因为字段不能为负数,将会返回false
3 include('./mysql.php');
4 $username = 'wang'.rand(0,1000);
5 //生成唯一订单
6 function build_order_no(){
7return date('ymd').substr(implode(NULL, array_map('ord', str_split(substr(uniqid(), 7, 13), 1))), 0, 8);
8 }
9 //记录日志
10 function insertLog($event,$type=0,$username){
11global $conn;
12$sql="insert into ih_log(event,type,usernma)
13values('$event','$type','$username')";
14return mysqli_query($conn,$sql);
15 }
16 function insertOrder($order_sn,$user_id,$goods_id,$sku_id,$price,$username,$number)
17 {
18global $conn;
19$sql="insert into ih_order(order_sn,user_id,goods_id,sku_id,price,username,number)
20values('$order_sn','$user_id','$goods_id','$sku_id','$price','$username','$number')";
21returnmysqli_query($conn,$sql);
22 }
23 //模拟下单操作
24 //库存是否大于0
【php高并发大数据 php大数据高并发处理】 25 $sql="select number from ih_store where goods_id='$goods_id' and sku_id='$sku_id' ";
26 $rs=mysqli_query($conn,$sql);
27 $row = $rs-fetch_assoc();
28if($row['number']0){//高并发下会导致超卖
29if($row['number']$number){
30return insertLog('库存不够',3,$username);
31}
32$order_sn=build_order_no();
33//库存减少
34$sql="update ih_store set number=number-{$number} where sku_id='$sku_id' and number0";
35$store_rs=mysqli_query($conn,$sql);
36if($store_rs){
37//生成订单
38insertOrder($order_sn,$user_id,$goods_id,$sku_id,$price,$username,$number);
39insertLog('库存减少成功',1,$username);
40}else{
41insertLog('库存减少失败',2,$username);
42}
43}else{
44insertLog('库存不够',3,$username);
45}
46 ?
php 高并发解决思路解决方案 php 高并发解决思路解决方案,如何应对网站大流量高并发情况 。本文为大家总结了常用的处理方式,但不是细节,后续一系列细节教程给出 。希望大家喜欢 。
一 高并发的概念
在互联网时代,并发 , 高并发通常是指并发访问 。也就是在某个时间点,有多少个访问同时到来 。
二 高并发架构相关概念
1、QPS (每秒查询率) : 每秒钟请求或者查询的数量,在互联网领域,指每秒响应请求数(指 HTTP 请求)
2、PV(Page View):综合浏览量,即页面浏览量或者点击量 , 一个访客在 24 小时内访问的页面数量
--注:同一个人浏览你的网站的同一页面,只记做一次 pv
3、吞吐量(fetches/sec) :单位时间内处理的请求数量 (通常由 QPS 和并发数决定)
4、响应时间:从请求发出到收到响应花费的时间
5、独立访客(UV):一定时间范围内,相同访客多次访问网站 , 只计算为 1 个独立访客
6、带宽:计算带宽需关注两个指标,峰值流量和页面的平均大小
7、日网站带宽: PV/统计时间(换算到秒) * 平均页面大?。╧b)* 8
三 需要注意点:
1、QPS 不等于并发连接数(QPS 是每秒 HTTP 请求数量,并发连接数是系统同时处理的请求数量)
2、峰值每秒请求数(QPS)= (总 PV 数*80%)/ (六小时秒数*20%)【代表 80%的访问量都集中在 20%的时间内】
3、压力测试: 测试能承受的最大并发数 以及测试最大承受的 QPS 值
4、常用的性能测试工具【ab,wrk,httpload,Web Bench,Siege , Apache JMeter】
四 优化
1、当 QPS 小于 50 时
优化方案:为一般小型网站,不用考虑优化
2、当 QPS 达到 100 时,遇到数据查询瓶颈
优化方案: 数据库缓存层,数据库的负载均衡
3、当 QPS 达到 800 时, 遇到带宽瓶颈
优化方案:CDN 加速,负载均衡
4、当 QPS 达到 1000 时
优化方案: 做 html 静态缓存
5、当 QPS 达到 2000 时
优化方案: 做业务分离,分布式存储
五、高并发解决方案案例:
1、流量优化
防盗链处理(去除恶意请求)
2、前端优化
(1) 减少 HTTP 请求[将 css,js 等合并]
(2) 添加异步请求(先不将所有数据都展示给用户,用户触发某个事件,才会异步请求数据)
(3) 启用浏览器缓存和文件压缩
(4) CDN 加速
(5) 建立独立的图片服务器(减少 I/O)
3、服务端优化
(1) 页面静态化
(2) 并发处理
(3) 队列处理
4、数据库优化
(1) 数据库缓存
(2) 分库分表,分区
(3) 读写分离
(4) 负载均衡
5、web 服务器优化
(1) nginx 反向代理实现负载均衡
(2) lvs 实现负载均衡
PHP如何解决网站的大数据大流量与高并发使用缓存,比如memcache,redis,因为它们是在内存中运行,所以处理数据,返回数据非常快 , 所以可以应对高并发 。
2.增加带宽和机器性能,1M的带宽同时处理的流量肯定有限,所以在资源允许的情况下,大带宽 , 多核cpu,高内存是一个解决方案 。
3.分布式,让多个访问分到不同的机器上去处理,每个机器处理的请求就相对减少了 。
简单说些常用技术 , 负载均衡,限流,加速器等
php高并发大数据的介绍就聊到这里吧,感谢你花时间阅读本站内容 , 更多关于php大数据高并发处理、php高并发大数据的信息别忘了在本站进行查找喔 。

    推荐阅读