python函数库全部 python基本函数库

Python中的库都有哪些?标准库
sys
系统相关的参数和函数 。sys 库一般用来访问和修改系统相关信息,比如查看 python 版本、系统环境变量、模块信息和 python 解释器相关信息等等 。
os
操作系统接口模块 。这个库提供了访问操作系统相关依赖的方式,比如输入输出操作、读写操作、操作系统异常错误信息、进程线程管理、文件管理、调度程序等等 。
re
正则表达式操作 。这个库是我喜欢并且经常会用到的库,在对大量字符串进行处理的时候用正则表达式是最快速有效的方式 , 但是正则表达式的学习曲线较高,有兴趣的朋友可以访问这个网站学习 。
math
数学函数库 。math 库提供了对 C 语言标准定义的数学函数访问,比如数论(Number-theoretic)的各种表示方法、幂和对数函数(Power and logarithmic functions)、三角函数(Trigonometric functions)、常量圆周率(π)和自然常数(e)等等 。
random
生成伪随机数 。
伪随机数与随机数(真随机数)不同的是执行环境,随机数是真实世界中通过物理过程实践得出结论,而伪随机数是通过计算机的特定算法生成的数 , 所以这个过程是可预测的、有规律的,只是循环周期较长 , 并不能与现实场景相切合 。
random库提供生成随机数,可以模拟现实世界中随机取数、随机抽奖等等 。望采纳
二级Python----Python的内置函数及标准库(DAY 8)python的内置函数(68个)
Python考核31个内置函数,
python内置python函数库全部了很多内置函数、类方法属性及各种模块 。当python函数库全部我们想要当我们想要了解某种类型有哪些属性方法以及每种方法该怎么使用时,我们可以使用dir()函数和help()函数在python idle交互式模式下获得我们想要的信息 。
? dir()函数获得对象中可用属性的列表
Python中的关键词有哪些?
dir(__builtins__):查看python内置函数
help(‘keywords‘):查看python关键词
如微分积分方程的求解程序、访问互联网、获取日期和时间、机器学习算法等 。这些程序往往被收入程序库中 , 构成程序库 。
【python函数库全部 python基本函数库】 只有经过严格检验的程序才能放在程序库里 。检验,就是对程序作充分的测试 。通常进行的有正确性测试、精度测试、速度测试、边界条件和出错状态的测试 。经过检验的程序不但能保证计算结果的正确性 , 而且对错误调用也能作出反应 。程序库中的程序都是规范化的 。所谓规范化有三重含义:①同一库里所有程序的格式是统一的python函数库全部;② 对这些程序的调用方法是相同的;③ 每个程序所需参数的数目、顺序和类型都是严格规定好的 。
Python的库包含标准库和第三方库
标准库:程序语言自身拥有的库 , 可以直接使用 。help('modules')
第三方库:第三方者使用该语言提供的程序库 。
标准库: turtle 库(必?。?random 库(必?。?time 库(可?。?。
?turtle 库:图形绘制库
原理如同控制一只海龟 , 以不同的方向和速度进行位移而得到其运动轨迹 。
使用模块的帮助时 , 需要先将模块导入 。
例如:在IDLE中输入import turtle
dir(turtle)
help(turtle.**)
1.画布
画布就是turtle为我们展开用于绘图区域, 我们可以设置它的大小和初始位置 。
setup()方法用于初始化画布窗口大小和位置,参数包括画布窗口宽、画布窗口高、窗口在屏幕的水平起始位置和窗口在屏幕的垂直起始位置 。
参数:width, height: 输入宽和高为整数时,表示 像素 ;为小数时,表示占据电脑屏幕的比例 。(startx,starty):这一坐标表示
矩形窗口左上角顶点的位置,如果为空,则窗口位于屏幕中心:
例如:setup(640,480,300,300)表示在桌面屏幕(300,300)位置开始创建640×480大小的画布窗体 。
2、画笔
? color() 用于设置或返回画笔颜色和填充颜色 。
例如:color(‘red’)将颜色设为红色,也可用fillcolor()方法设置或返回填充颜色,或用pencolor()方法设置或返回笔触颜色 。
python有哪些库Python中6个最重要的库:
第一、NumPy
NumPy是Numerical
Python的简写,是Python数值计算的基石 。它提供多种数据结构、算法以及大部分涉及Python数值计算所需的接口 。NumPy还包括其他内容:
①快速、高效的多维数组对象ndarray
②基于元素的数组计算或数组间数学操作函数
③用于读写硬盘中基于数组的数据集的工具
④线性代数操作、傅里叶变换以及随机数生成
除了NumPy赋予Python的快速数组处理能力之外,NumPy的另一个主要用途是在算法和库之间作为数据传递的数据容器 。对于数值数据,NumPy数组能够比Python内建数据结构更为高效地存储和操作数据 。
第二、pandas
pandas提供了高级数据结构和函数,这些数据结构和函数的设计使得利用结构化、表格化数据的工作快速、简单、有表现力 。它出现于2010年,帮助Python成为强大、高效的数据分析环境 。常用的pandas对象是DataFrame,它是用于实现表格化、面向列、使用行列标签的数据结构;以及Series,一种一维标签数组对象 。
pandas将表格和关系型数据库的灵活数据操作能力与Numpy的高性能数组计算的理念相结合 。它提供复杂的索引函数,使得数据的重组、切块、切片、聚合、子集选择更为简单 。由于数据操作、预处理、清洗在数据分析中是重要的技能,pandas将是重要主题 。
第三、matplotlib
matplotlib是最流行的用于制图及其他二维数据可视化的Python库,它由John D.
Hunter创建 , 目前由一个大型开发者团队维护 。matplotlib被设计为适合出版的制图工具 。
对于Python编程者来说也有其他可视化库,但matplotlib依然使用最为广泛,并且与生态系统的其他库良好整合 。
第四、IPython
IPython项目开始于2001年 , 由Fernando
Pérez发起,旨在开发一个更具交互性的Python解释器 。在过去的16年中,它成为Python数据技术栈中最重要的工具之一 。
尽管它本身并不提供任何计算或数据分析工具,它的设计侧重于在交互计算和软件开发两方面将生产力最大化 。它使用了一种执行-探索工作流来替代其他语言中典型的编辑-编译-运行工作流 。它还提供了针对操作系统命令行和文件系统的易用接口 。由于数据分析编码工作包含大量的探索、试验、试错和遍历,IPython可以使你更快速地完成工作 。
第五、SciPy
SciPy是科学计算领域针对不同标准问题域的包集合 。以下是SciPy中包含的一些包:
①scipy.integrate数值积分例程和微分方程求解器
②scipy.linalg线性代数例程和基于numpy.linalg的矩阵分解
③scipy.optimize函数优化器和求根算法
④scipy.signal信号处理工具
⑤scipy.sparse稀疏矩阵与稀疏线性系统求解器
SciPy与Numpy一起为很多传统科学计算应用提供了一个合理、完整、成熟的计算基础 。
第六、scikit-learn
scikit-learn项目诞生于2010年,目前已成为Python编程者首选的机器学习工具包 。仅仅七年,scikit-learn就拥有了全世界1500位代码贡献者 。其中包含以下子模块:
①分类:SVM、最近邻、随机森林、逻辑回归等
②回归:Lasso、岭回归等
③聚类:K-means、谱聚类等
④降维:PCA、特征选择、矩阵分解等
⑤模型选择:网格搜索、交叉验证、指标矩阵
⑥预处理:特征提取、正态化
scikit-learn与pandas、statsmodels、IPython一起使Python成为高效的数据科学编程语言 。
python常用函数1、complex()
返回一个形如 a bj 的复数,传入参数分为三种情况:
参数为空时,返回0j;参数为字符串时,将字符串表达式解释为复数形式并返回;参数为两个整数(a,b)时,返回 a bj;参数只有一个整数 a 时,虚部 b 默认为0 , 函数返回 a 0j 。
2、dir()
不提供参数时,返回当前本地范围内的名称列表;提供一个参数时 , 返回该对象包含的全部属性 。
3、divmod(a,b)
a -- 代表被除数 , 整数或浮点数;b -- 代表除数,整数或浮点数;根据 除法运算 计算 a,b 之间的商和余数,函数返回一个元组(p,q),p 代表商 a//b,q 代表余数 a%b 。
4、enumerate(iterable,start=0)
iterable -- 一个可迭代对象,列表、元组序列等;start -- 计数索引值,默认初始为0‘该函数返回枚举对象是个迭代器 , 利用 next() 方法依次返回元素值,每个元素以元组形式存在 , 包含一个计数元素(起始为 start )和 iterable 中对应的元素值 。
python常用函数包有哪些?一些python常用函数包:
1、Urllib3
Urllib3是一个 Python 的 HTTP 客户端 , 它拥有 Python 标准库中缺少的许多功能:
线程安全
连接池
客户端 SSL/TLS 验证
使用分段编码上传文件
用来重试请求和处理 HTTP 重定向的助手
支持 gzip 和 deflate 编码
HTTP 和 SOCKS 的代理支持
2、Six
six 是一个是 Python 2 和 3 的兼容性库 。这个项目旨在支持可同时运行在 Python 2 和 3 上的代码库 。它提供了许多可简化 Python 2 和 3 之间语法差异的函数 。
3、botocore、boto3、s3transfer、awscli
Botocore是 AWS 的底层接口 。Botocore是 Boto3 库(#22)的基?。笳呷媚憧梢允褂?Amazon S3 和 Amazon EC2 一类的服务 。Botocore 还是 AWS-CLI 的基础 , 后者为 AWS 提供统一的命令行界面 。
S3transfer(#7)是用于管理 Amazon S3 传输的 Python 库 。它正在积极开发中 , 其介绍页面不推荐人们现在使用,或者至少等版本固定下来再用,因为其 API 可能发生变化,在次要版本之间都可能更改 。Boto3、AWS-CLI和其他许多项目都依赖s3transfer 。
4、Pip
pip是“Pip Installs Packages”的首字母递归缩写 。
pip很容易使用 。要安装一个包只需pip install package name即可,而删除包只需pip uninstall package name即可 。
最大优点之一是它可以获取包列表,通常以requirements.txt文件的形式获取 。该文件能选择包含所需版本的详细规范 。大多数 Python 项目都包含这样的文件 。
如果结合使用pip与virtualenv(列表中的 #57),就可以创建可预测的隔离环境,同时不会干扰底层系统,反之亦然 。
5、Python-dateutil
python-dateutil模块提供了对标准datetime模块的强大扩展 。我的经验是,常规的Python datetime缺少哪些功能,python-dateutil就能补足那一块 。
6、Requests
Requests建立在我们的 #1 库——urllib3基础上 。它让 Web 请求变得非常简单 。相比urllib3来说,很多人更喜欢这个包 。而且使用它的最终用户可能也比urllib3更多 。后者更偏底层,并且考虑到它对内部的控制级别,它一般是作为其他项目的依赖项 。
7、Certifi
近年来,几乎所有网站都转向 SSL , 你可以通过地址栏中的小锁符号来识别它 。加了小锁意味着与该站点的通信是安全和加密的,能防止窃听行为 。
8、Idna
根据其 PyPI 页面,idna提供了“对 RFC5891 中指定的应用程序中国际化域名(IDNA)协议的支持 。”
IDNA的核心是两个函数:ToASCII和ToUnicode 。ToASCII会将国际 Unicode 域转换为 ASCII 字符串 。ToUnicode则逆转该过程 。在IDNA包中,这些函数称为idna.encode()和idna.decode()
9、PyYAML
YAML是一种数据序列化格式 。它的设计宗旨是让人类和计算机都能很容易地阅读代码——人类很容易读写它的内容,计算机也可以解析它 。
PyYAML是 Python 的YAML解析器和发射器 , 这意味着它可以读写YAML 。它会把任何 Python 对象写成YAML:列表、字典,甚至是类实例都包括在内 。
10、Pyasn1
像上面的IDNA一样,这个项目也非常有用:
ASN.1 类型和 DER/BER/CER 编码(X.208)的纯 Python 实现
所幸这个已有数十年历史的标准有很多信息可用 。ASN.1是 Abstract Syntax Notation One 的缩写,它就像是数据序列化的教父 。它来自电信行业 。也许你知道协议缓冲区或 Apache Thrift?这就是它们的 1984 年版本 。
11、Docutils
Docutils是一个模块化系统,用来将纯文本文档处理为很多有用的格式 , 例如 HTML、XML 和 LaTeX 等 。Docutils能读取reStructuredText格式的纯文本文档,这种格式是类似于 MarkDown 的易读标记语法 。
12、Chardet
你可以用chardet模块来检测文件或数据流的字符集 。比如说,需要分析大量随机文本时,这会很有用 。但你也可以在处理远程下载的数据,但不知道用的是什么字符集时使用它 。
13、RSA
rsa包是一个纯 Python 的 RSA 实现 。它支持:
加密和解密
签名和验证签名
根据 PKCS#1 1.5 版生成密钥
它既可以用作 Python 库,也能在命令行中使用 。
14、Jmespath
JMESPath,发音为“James path”,使 Python 中的 JSON 更容易使用 。它允许你声明性地指定如何从 JSON 文档中提取元素 。
15、Setuptools
它是用于创建 Python 包的工具 。不过,其文档很糟糕 。它没有清晰描述它的用途,并且文档中包含无效链接 。最好的信息源是这个站点,特别是这个创建 Python 包的指南 。
16、Pytz
像dateutils一样,这个库可帮助你处理日期和时间 。有时候,时区处理起来可能很麻烦 。幸好有这样的包 , 可以让事情变得简单些 。
17、Futures
从 Python 3.2 开始,python 提供current.futures模块 , 可帮助你实现异步执行 。futures 包是该库适用于 Python 2 的 backport 。它不适用于 Python3 用户,因为 Python 3 原生提供了该模块 。
18、Colorama
使用 Colorama,你可以为终端添加一些颜色:
更多Python知识请关注Python自学网
python函数库全部的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于python基本函数库、python函数库全部的信息别忘了在本站进行查找喔 。

    推荐阅读