Python常用的标准库以及第三方库有哪些?推荐5个常用的Python标准库:
1、os:提供了不少与操作系统相关联的函数库
os包是Python与操作系统的接口 。我们可以用os包来实现操作系统的许多功能 , 比如管理系统进程 , 改变当前路径 , 改变文件权限等 。但要注意,os包是建立在操作系统的平台上的,许多功能在Windows系统上是无法实现的 。另外,在使用os包中,要注意其中的有些功能已经被其他的包取代 。
我们通过文件系统来管理磁盘上储存的文件 。查找、删除、复制文件以及列出文件列表等都是常见的文件操作 。这些功能通常可以在操作系统中看到,但现在可以通过Python标准库中的glob包、shutil包、os.path包以及os包的一些函数等,在Python内部实现 。
2、sys:通常用于命令行参数的库
sys包被用于管理Python自身的运行环境 。Python是一个解释器,也是一个运行在操作系统上的程序 。我们可以用sys包来控制这一程序运行的许多参数,比如说Python运行所能占据的内存和CPU,Python所要扫描的路径等 。另一个重要功能是和Python自己的命令行互动,从命令行读取命令和参数 。
3、random:用于生成随机数的库
Python标准库中的random函数 , 可以生成随机浮点数、整数、字符串,甚至帮助你随机选择列表序列中的一个元素,打乱一组数据等 。
4、math:提供了数学常数和数学函数
标准库中,Python定义了一些新的数字类型,以弥补之前的数字类型可能的不足 。标准库还包含了random包,用于处理随机数相关的功能 。math包补充了一些重要的数学常数和数学函数,比如pi、三角函数等等 。
5、datetime:日期和时间的操作库
日期和时间的管理并不复杂,但容易犯错 。Python的标准库中对日期和时间的管理颇为完善,你不仅可以进行日期时间的查询和变换,还可以对日期时间进行运算 。通过这些标准库 , 还可以根据需要控制日期时间输出的文本格式
python里面有哪些自带函数?python系统提供了下面常用的函数:
1. 数学库模块(math)提供了很多数学运算函数;
2.复数模块(cmath)提供了用于复数运算的函数;
3.随机数模块(random)提供了用来生成随机数的函数;
4.时间(time)和日历(calendar)模块提供了能处理日期和时间的函数 。
注意:在调用系统函数之前,先要使用import 语句导入 相应的模块
该语句将模块中定义的函数代码复制到自己的程 序中 , 然后就可以访问模块中的任何函数,其方 法是在函数名前面加上“模块名.” 。
希望能帮到你 。
python有哪些库Python中6个最重要的库python数学函数库:
第一、NumPy
NumPy是Numerical
Python的简写,是Python数值计算的基石 。它提供多种数据结构、算法以及大部分涉及Python数值计算所需的接口 。NumPy还包括其他内容:
①快速、高效的多维数组对象ndarray
②基于元素的数组计算或数组间数学操作函数
③用于读写硬盘中基于数组的数据集的工具
④线性代数操作、傅里叶变换以及随机数生成
除了NumPy赋予Python的快速数组处理能力之外,NumPy的另一个主要用途是在算法和库之间作为数据传递的数据容器 。对于数值数据 , NumPy数组能够比Python内建数据结构更为高效地存储和操作数据 。
第二、pandas
pandas提供了高级数据结构和函数 , 这些数据结构和函数的设计使得利用结构化、表格化数据的工作快速、简单、有表现力 。它出现于2010年,帮助Python成为强大、高效的数据分析环境 。常用的pandas对象是DataFrame,它是用于实现表格化、面向列、使用行列标签的数据结构;以及Series,一种一维标签数组对象 。
pandas将表格和关系型数据库的灵活数据操作能力与Numpy的高性能数组计算的理念相结合 。它提供复杂的索引函数,使得数据的重组、切块、切片、聚合、子集选择更为简单 。由于数据操作、预处理、清洗在数据分析中是重要的技能,pandas将是重要主题 。
第三、matplotlib
matplotlib是最流行的用于制图及其他二维数据可视化的Python库,它由John D.
Hunter创建,目前由一个大型开发者团队维护 。matplotlib被设计为适合出版的制图工具 。
对于Python编程者来说也有其他可视化库,但matplotlib依然使用最为广泛 , 并且与生态系统的其他库良好整合 。
第四、IPython
IPython项目开始于2001年,由Fernando
Pérez发起,旨在开发一个更具交互性的Python解释器 。在过去的16年中 , 它成为Python数据技术栈中最重要的工具之一 。
尽管它本身并不提供任何计算或数据分析工具,它的设计侧重于在交互计算和软件开发两方面将生产力最大化 。它使用了一种执行-探索工作流来替代其他语言中典型的编辑-编译-运行工作流 。它还提供了针对操作系统命令行和文件系统的易用接口 。由于数据分析编码工作包含大量的探索、试验、试错和遍历,IPython可以使python数学函数库你更快速地完成工作 。
第五、SciPy
SciPy是科学计算领域针对不同标准问题域的包集合 。以下是SciPy中包含的一些包:
①scipy.integrate数值积分例程和微分方程求解器
②scipy.linalg线性代数例程和基于numpy.linalg的矩阵分解
③scipy.optimize函数优化器和求根算法
④scipy.signal信号处理工具
⑤scipy.sparse稀疏矩阵与稀疏线性系统求解器
SciPy与Numpy一起为很多传统科学计算应用提供了一个合理、完整、成熟的计算基础 。
第六、scikit-learn
scikit-learn项目诞生于2010年,目前已成为Python编程者首选的机器学习工具包 。仅仅七年,scikit-learn就拥有了全世界1500位代码贡献者 。其中包含以下子模块:
①分类:SVM、最近邻、随机森林、逻辑回归等
②回归:Lasso、岭回归等
③聚类:K-means、谱聚类等
④降维:PCA、特征选择、矩阵分解等
⑤模型选择:网格搜索、交叉验证、指标矩阵
⑥预处理:特征提取、正态化
scikit-learn与pandas、statsmodels、IPython一起使Python成为高效的数据科学编程语言 。
python数据分析需要哪些库?1.Numpy库
是Python开源python数学函数库的数值计算扩展工具python数学函数库,提供python数学函数库了Python对多维数组python数学函数库的支持,能够支持高级的维度数组与矩阵运算 。此外,针对数组运算也提供python数学函数库了大量的数学函数库,Numpy是大部分Python科学计算的基础 , 具有很多功能 。
2.Pandas库
是一个基于Numpy的数据分析包,为了解决数据分析任务而创建的 。Pandas中纳入了大量库和标准的数据模型,提供了高效地操作大型数据集所需要的函数和方法 , 使用户能快速便捷地处理数据 。
3.Matplotlib库
是一个用在Python中绘制数组的2D图形库,虽然它起源于模仿MATLAB图形命令 , 但它独立于MATLAB,可以通过Pythonic和面向对象的方式使用,是Python中Z出色的绘图库 。主要用纯Python语言编写的,它大量使用Numpy和其他扩展代码,即使对大型数组也能提供良好的性能 。
4.Seaborn库
是Python中基于Matplotlib的数据可视化工具,提供了很多高层封装的函数,帮助数据分析人员快速绘制美观的数据图形,从而避免了许多额外的参数配置问题 。
5.NLTK库
被称为使用Python进行教学和计算语言学工作的Z佳工具,以及用自然语言进行游戏的神奇图书馆 。NLTK是一个领先的平台,用于构建使用人类语言数据的Python程序,它为超过50个语料库和词汇资源提供了易于使用的接口,还提供了一套文本处理库,用于分类、标记化、词干化、解析和语义推理、NLP库的包装器和一个活跃的讨论社区 。
Python--math库Python math 库提供许多对浮点数的数学运算函数,math模块不支持复数运算 , 若需计算复数,可使用cmath模块(本文不赘述) 。
使用dir函数 , 查看math库中包含的所有内容:
1) math.pi# 圆周率π
2) math.e#自然对数底数
3) math.inf#正无穷大∞,-math.inf#负无穷大-∞
4) math.nan#非浮点数标记,NaN(not a number)
1) math.fabs(x)#表示X值的绝对值
2) math.fmod(x,y)#表示x/y的余数 , 结果为浮点数
3) math.fsum([x,y,z])#对括号内每个元素求和,其值为浮点数
4) math.ceil(x)#向上取整,返回不小于x的最小整数
5)math.floor(x)#向下取整,返回不大于x的最大整数
6) math.factorial(x)#表示X的阶乘,其中X值必须为整型,否则报错
7) math.gcd(a,b)#表示a,b的最大公约数
8)math.frexp(x)#x = i *2^j,返回(i,j)
9) math.ldexp(x,i)#返回x*2^i的运算值,为math.frexp(x)函数的反运算
10) math.modf(x)#表示x的小数和整数部分
11) math.trunc(x)#表示x值的整数部分
12) math.copysign(x,y)#表示用数值y的正负号 , 替换x值的正负号
13) math.isclose(a,b,rel_tol =x,abs_tol = y)#表示a,b的相似性,真值返回True,否则False;rel_tol是相对公差:表示a , b之间允许的最大差值,abs_tol是最小绝对公差,对比较接近于0有用 , abs_tol必须至少为0 。
14) math.isfinite(x)#表示当x不为无穷大时 , 返回True,否则返回False
15) math.isinf(x)#当x为±∞时 , 返回True,否则返回False
16) math.isnan(x)#当x是NaN,返回True,否则返回False
1) math.pow(x,y)#表示x的y次幂
2) math.exp(x)#表示e的x次幂
3) math.expm1(x)#表示e的x次幂减1
4) math.sqrt(x)#表示x的平方根
5) math.log(x,base)#表示x的对数值,仅输入x值时 , 表示ln(x)函数
6) math.log1p(x)#表示1 x的自然对数值
7) math.log2(x)#表示以2为底的x对数值
8) math.log10(x)#表示以10为底的x的对数值
1) math.degrees(x)#表示弧度值转角度值
2) math.radians(x)#表示角度值转弧度值
3) math.hypot(x,y)#表示(x,y)坐标到原点(0,0)的距离
4) math.sin(x)#表示x的正弦函数值
5) math.cos(x)#表示x的余弦函数值
6) math.tan(x)#表示x的正切函数值
【python数学函数库 python函数大全库】 7)math.asin(x)#表示x的反正弦函数值
8) math.acos(x)#表示x的反余弦函数值
9) math.atan(x)#表示x的反正切函数值
10) math.atan2(y,x)#表示y/x的反正切函数值
11) math.sinh(x)#表示x的双曲正弦函数值
12) math.cosh(x)#表示x的双曲余弦函数值
13) math.tanh(x)#表示x的双曲正切函数值
14) math.asinh(x)#表示x的反双曲正弦函数值
15) math.acosh(x)#表示x的反双曲余弦函数值
16) math.atanh(x)#表示x的反双曲正切函数值
1)math.erf(x)#高斯误差函数
2) math.erfc(x)#余补高斯误差函数
3) math.gamma(x)#伽马函数(欧拉第二积分函数)
4) math.lgamma(x)#伽马函数的自然对数
关于python数学函数库和python函数大全库的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息 , 记得收藏关注本站 。
推荐阅读
- 直播设备模型,直播设备图
- 电商如何确认收入合理,电商确认收入的时点
- postgretrim函数,post函数的用法
- php数据转换图表,php文件转换图片
- go语言常用开发工具 go语言开发工具包
- 海淘跨境电商如何优化退货,海淘跨境电商如何优化退货时间
- 头条号可以分享什么视频,头条号可以分享什么视频呢
- js替换所有字符点,js替换所有特殊字符
- linux命令行和关机 linux如何用命令行关机