go语言链表反转 go 链表反转

怎么判断一个单向链表是否有回环1, 最简单的方法, 用一个指针遍历链表, 每遇到一个节点就把他的内存地址(java中可以用object.hashcode())做为key放在一个hashtable中. 这样当hashtable中出现重复key的时候说明此链表上有环. 这个方法的时间复杂度为O(n), 空间同样为O(n).
2, 使用反转指针的方法, 每过一个节点就把该节点的指针反向:
Boolean reverse(Node *head) {
Node *curr = head;
Node *next = head-next;
curr-next = NULL;
while(next!=NULL) {
if(next == head) { /* go back to the head of the list, so there is a loop */
next-next = curr;
return TRUE;
}
Node *temp = curr;
curr = next;
next = next-next;
curr-next = temp;
}
/* at the end of list, so there is no loop, let's reverse the list back */
next = curr-next;
curr -next = NULL;
while(next!=NULL) {
Node *temp = curr;
curr = next;
next = next-next;
curr-next = temp;
}
return FALSE;
}
看上去这是一种奇怪的方法: 当有环的时候反转next指针会最终走到链表头部; 当没有环的时候反转next指针会破坏链表结构(使链表反向), 所以需要最后把链表再反向一次. 这种方法的空间复杂度是O(1), 实事上我们使用了3个额外指针;而时间复杂度是O(n), 我们最多2次遍历整个链表(当链表中没有环的时候).
这个方法的最大缺点是在多线程情况下不安全, 当多个线程都在读这个链表的时候, 检查环的线程会改变链表的状态, 虽然最后我们恢复了链表本身的结构, 但是不能保证其他线程能得到正确的结果.
3, 这是一般面试官所预期的答案: 快指针和慢指针
Boolean has_loop(Node *head) {
Node *pf = head; /* fast pointer */
Node *ps = head; /* slow pointer */
while(true) {
if(pfpf-next)
pf = pf-next-next;
else
return FALSE;
ps = ps-next;
if(ps == pf)
return TRUE;
}
}
需要说明的是, 当慢指针(ps)进入环之后, 最多会走n-1步就能和快指针(pf)相遇, 其中n是环的长度. 也就是说快指针在环能不会跳过慢指针, 这个性质可以简单的用归纳法来证明. (1)当ps在环中位置i, 而pf在环中位置i-1, 则在下一个iteration, ps会和pf在i 1相遇.
(2)当ps在环中位置i, 而pf在环中位置i-2, 则在下一个iteration, ps在i 1, pf在i, 于是在下一个iteration ps和pf会相遇在i 2位置
(3)和上面推理过程类似, 当ps在i, pf在i 1, 则他们会经过n-1个iteration在i n-1的位置相遇. 于是慢指针的步数不会超过n-1.
扩展:
这个问题还有一些扩展, 例如, 如何找到环的开始节点? 如何解开这个环? 这些问题的本质就是如何找到有"回边"的那个节点.
我们可以利用方法3的一个变形来解决这个问题:
Boolean has_loop(Node *head) {
Node *pf = head; /* fast pointer */
Node *ps = head; /* slow pointer */
while(true) {/* step 1, is there a loop? */
if(pfpf-next)
pf = pf-next-next;
else
return FALSE;
ps = ps-next;
if(ps == pf)
break;
}
/* step 2, how long is the loop */
int i = 0;
do {
ps = ps-next;
pf = pf-next-next;
i;
} while(ps!=pf)
/* step 3, use 2 addtional pointers with distance i to break the loop */
ps = head;
pf = head;
int j;
for(j=0; ji; j) { pf = pf-next; }
j = 0;
while(ps!=pf) {
ps = ps-next;
pf = pf-next;
j;
}
printf("loop begins at position %d, node address is %x", j, ps);
/*step 4, break the loop*/
for(j=0; j=i; j) { ps = ps-next; } //step i-1 in the loop from loop beginning
ps-next = NULL; // break the loop
return TRUE;
【golang详解】go语言GMP(GPM)原理和调度Goroutine调度是一个很复杂的机制 , 下面尝试用简单的语言描述一下Goroutine调度机制,想要对其有更深入的了解可以去研读一下源码 。
首先介绍一下GMP什么意思:
G ----------- goroutine: 即Go协程 , 每个go关键字都会创建一个协程 。
M ---------- thread内核级线程 , 所有的G都要放在M上才能运行 。
P ----------- processor处理器 , 调度G到M上 , 其维护了一个队列,存储了所有需要它来调度的G 。
Goroutine 调度器P和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行
模型图:
避免频繁的创建、销毁线程,而是对线程的复用 。
1)work stealing机制
当本线程无可运行的G时,尝试从其他线程绑定的P偷取G,而不是销毁线程 。
2)hand off机制
当本线程M0因为G0进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行 。进而某个空闲的M1获取P,继续执行P队列中剩下的G 。而M0由于陷入系统调用而进被阻塞,M1接替M0的工作 , 只要P不空闲 , 就可以保证充分利用CPU 。M1的来源有可能是M的缓存池 , 也可能是新建的 。当G0系统调用结束后 , 根据M0是否能获取到P , 将会将G0做不同的处理:
如果有空闲的P,则获取一个P,继续执行G0 。
如果没有空闲的P,则将G0放入全局队列 , 等待被其他的P调度 。然后M0将进入缓存池睡眠 。
如下图
GOMAXPROCS设置P的数量,最多有GOMAXPROCS个线程分布在多个CPU上同时运行
在Go中一个goroutine最多占用CPU 10ms,防止其他goroutine被饿死 。
具体可以去看另一篇文章
【Golang详解】go语言调度机制 抢占式调度
当创建一个新的G之后优先加入本地队列 , 如果本地队列满了,会将本地队列的G移动到全局队列里面,当M执行work stealing从其他P偷不到G时,它可以从全局G队列获取G 。
协程经历过程
我们创建一个协程 go func()经历过程如下图:
说明:
这里有两个存储G的队列,一个是局部调度器P的本地队列、一个是全局G队列 。新创建的G会先保存在P的本地队列中,如果P的本地队列已经满了就会保存在全局的队列中;处理器本地队列是一个使用数组构成的环形链表,它最多可以存储 256 个待执行任务 。
G只能运行在M中,一个M必须持有一个P,M与P是1:1的关系 。M会从P的本地队列弹出一个可执行状态的G来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行;
一个M调度G执行的过程是一个循环机制;会一直从本地队列或全局队列中获取G
上面说到P的个数默认等于CPU核数,每个M必须持有一个P才可以执行G,一般情况下M的个数会略大于P的个数,这多出来的M将会在G产生系统调用时发挥作用 。类似线程池,Go也提供一个M的池子,需要时从池子中获取 , 用完放回池子,不够用时就再创建一个 。
work-stealing调度算法:当M执行完了当前P的本地队列队列里的所有G后,P也不会就这么在那躺尸啥都不干,它会先尝试从全局队列队列寻找G来执行 , 如果全局队列为空,它会随机挑选另外一个P,从它的队列里中拿走一半的G到自己的队列中执行 。
如果一切正常,调度器会以上述的那种方式顺畅地运行,但这个世界没这么美好,总有意外发生,以下分析goroutine在两种例外情况下的行为 。
Go runtime会在下面的goroutine被阻塞的情况下运行另外一个goroutine:
用户态阻塞/唤醒
当goroutine因为channel操作或者network I/O而阻塞时(实际上golang已经用netpoller实现了goroutine网络I/O阻塞不会导致M被阻塞,仅阻塞G , 这里仅仅是举个栗子),对应的G会被放置到某个wait队列(如channel的waitq),该G的状态由_Gruning变为_Gwaitting,而M会跳过该G尝试获取并执行下一个G,如果此时没有可运行的G供M运行,那么M将解绑P , 并进入sleep状态;当阻塞的G被另一端的G2唤醒时(比如channel的可读/写通知),G被标记为 , 尝试加入G2所在P的runnext(runnext是线程下一个需要执行的 Goroutine 。) , 然后再是P的本地队列和全局队列 。
系统调用阻塞
当M执行某一个G时候如果发生了阻塞操作,M会阻塞,如果当前有一些G在执行 , 调度器会把这个线程M从P中摘除,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P 。当M系统调用结束时候 , 这个G会尝试获取一个空闲的P执行,并放入到这个P的本地队列 。如果获取不到P,那么这个线程M变成休眠状态,加入到空闲线程中,然后这个G会被放入全局队列中 。
队列轮转
可见每个P维护着一个包含G的队列,不考虑G进入系统调用或IO操作的情况下 , P周期性的将G调度到M中执行,执行一小段时间,将上下文保存下来,然后将G放到队列尾部,然后从队列中重新取出一个G进行调度 。
除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G 。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死 。
除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行 , 全局队列中G的来源,主要有从系统调用中恢复的G 。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死 。
M0
M0是启动程序后的编号为0的主线程,这个M对应的实例会在全局变量rutime.m0中,不需要在heap上分配,M0负责执行初始化操作和启动第一个G , 在之后M0就和其他的M一样了
G0
G0是每次启动一个M都会第一个创建的goroutine , G0仅用于负责调度G,G0不指向任何可执行的函数,每个M都会有一个自己的G0 , 在调度或系统调用时会使用G0的栈空间 , 全局变量的G0是M0的G0
一个G由于调度被中断,此后如何恢复?
中断的时候将寄存器里的栈信息,保存到自己的G对象里面 。当再次轮到自己执行时,将自己保存的栈信息复制到寄存器里面,这样就接着上次之后运行了 。
我这里只是根据自己的理解进行了简单的介绍,想要详细了解有关GMP的底层原理可以去看Go调度器 G-P-M 模型的设计者的文档或直接看源码
参考:()
()
GO语言(十六):模糊测试入门(上)本教程介绍了 Go 中模糊测试的基础知识 。通过模糊测试,随机数据会针对您的测试运行,以尝试找出漏洞或导致崩溃的输入 。可以通过模糊测试发现的一些漏洞示例包括 SQL 注入、缓冲区溢出、拒绝服务和跨站点脚本攻击 。
在本教程中 , 您将为一个简单的函数编写一个模糊测试,运行 go 命令 , 并调试和修复代码中的问题 。
首先,为您要编写的代码创建一个文件夹 。
1、打开命令提示符并切换到您的主目录 。
在 Linux 或 Mac 上:
在 Windows 上:
2、在命令提示符下 , 为您的代码创建一个名为 fuzz 的目录 。
3、创建一个模块来保存您的代码 。
运行go mod init命令,为其提供新代码的模块路径 。
接下来 , 您将添加一些简单的代码来反转字符串,稍后我们将对其进行模糊测试 。
在此步骤中,您将添加一个函数来反转字符串 。
a.使用您的文本编辑器,在 fuzz 目录中创建一个名为 main.go 的文件 。
【go语言链表反转 go 链表反转】独立程序(与库相反)始终位于 package 中main 。
此函数将接受string,使用byte进行循环 ,并在最后返回反转的字符串 。
此函数将运行一些Reverse操作,然后将输出打印到命令行 。这有助于查看运行中的代码,并可能有助于调试 。
e.该main函数使用 fmt 包,因此您需要导入它 。
第一行代码应如下所示:
从包含 main.go 的目录中的命令行 , 运行代码 。
可以看到原来的字符串 , 反转它的结果,然后再反转它的结果,就相当于原来的了 。
现在代码正在运行,是时候测试它了 。
在这一步中,您将为Reverse函数编写一个基本的单元测试 。
a.使用您的文本编辑器,在 fuzz 目录中创建一个名为 reverse_test.go 的文件 。
b.将以下代码粘贴到 reverse_test.go 中 。
这个简单的测试将断言列出的输入字符串将被正确反转 。
使用运行单元测试go test
接下来,您将单元测试更改为模糊测试 。
单元测试有局限性,即每个输入都必须由开发人员添加到测试中 。模糊测试的一个好处是它可以为您的代码提供输入,并且可以识别您提出的测试用例没有达到的边缘用例 。
在本节中,您将单元测试转换为模糊测试,这样您就可以用更少的工作生成更多的输入!
请注意,您可以将单元测试、基准测试和模糊测试保存在同一个 *_test.go 文件中 , 但对于本示例,您将单元测试转换为模糊测试 。
在您的文本编辑器中,将 reverse_test.go 中的单元测试替换为以下模糊测试 。
Fuzzing 也有一些限制 。在您的单元测试中 , 您可以预测Reverse函数的预期输出 , 并验证实际输出是否满足这些预期 。
例如 , 在测试用例Reverse("Hello, world")中,单元测试将返回指定为"dlrow ,olleH".
模糊测试时,您无法预测预期输出,因为您无法控制输入 。
但是,Reverse您可以在模糊测试中验证函数的一些属性 。在这个模糊测试中检查的两个属性是:
(1)将字符串反转两次保留原始值
(2)反转的字符串将其状态保留为有效的 UTF-8 。
注意单元测试和模糊测试之间的语法差异:
(3)确保新包unicode/utf8已导入 。
随着单元测试转换为模糊测试,是时候再次运行测试了 。
a.在不进行模糊测试的情况下运行模糊测试,以确保种子输入通过 。
如果您在该文件中有其他测试,您也可以运行go test -run=FuzzReverse , 并且您只想运行模糊测试 。
b.运行FuzzReverse模糊测试 , 查看是否有任何随机生成的字符串输入会导致失败 。这是使用go test新标志-fuzz执行的 。
模糊测试时发生故障,导致问题的输入被写入将在下次运行的种子语料库文件中go test,即使没有-fuzz标志也是如此 。要查看导致失败的输入,请在文本编辑器中打开写入 testdata/fuzz/FuzzReverse 目录的语料库文件 。您的种子语料库文件可能包含不同的字符串,但格式相同 。
语料库文件的第一行表示编码版本 。以下每一行代表构成语料库条目的每种类型的值 。由于 fuzz target 只需要 1 个输入,因此版本之后只有 1 个值 。
c.运行没有-fuzz标志的go test; 新的失败种子语料库条目将被使用:
由于我们的测试失败,是时候调试了 。
Go语言list(列表)2021-11-10
列表是一种非连续的存储容器go语言链表反转,有多个节点组成,节点通过一些变量记录彼此之间的关系
单链表和双链表就是列表的两种方法 。
原理:A、B、C三个人 , B懂A的电话,C懂B的电话只是单方知道号码,这样就形成go语言链表反转了一个单链表结构 。
如果C把自己的号码给B,B把自己的号码给A,因为是双方都知道对方的号码,这样就形成了一个双链表结构
如果B换号码了,go语言链表反转他需要通知AC,把自己的号码删了,这个过程就是列表的删除操作 。
在Go语言中,列表使用 container/list 包来实现,内部的实现原理是双链表,列表能够高效地进行任意位置的元素插入和删除操作 。
列表初始化的两种办法
列表没有给出具体的元素类型的限制,所以列表的元素可以是任意类型的,
例如给列表中放入了一个 interface{} 类型的值,取出值后,如果要将 interface{} 转换为其他类型将会发生宕机 。
双链表支持从队列前方或后方插入元素 , 分别对应的方法是 PushFront 和 PushBack 。
列表插入函数的返回值会提供一个 *list.Element 结构 , 这个结构记录着列表元素的值以及与其他节点之间的关系等信息 , 从列表中删除元素时,需要用到这个结构进行快速删除 。
遍历完也能看到最后的结果
学习地址:
Go语言设计与实现(上)基本设计思路:
类型转换、类型断言、动态派发 。iface,eface 。
反射对象具有的方法:
编译优化:
内部实现:
实现 Context 接口有以下几个类型(空实现就忽略了):
互斥锁的控制逻辑:
设计思路:
(以上为写被读阻塞,下面是读被写阻塞)
总结 , 读写锁的设计还是非常巧妙的:
设计思路:
WaitGroup 有三个暴露的函数:
部件:
设计思路:
结构:
Once 只暴露了一个方法:
实现:
三个关键点:
细节:
让多协程任务的开始执行时间可控(按顺序或归一) 。(Context 是控制结束时间)
设计思路: 通过一个锁和内置的 notifyList 队列实现 , Wait() 会生成票据,并将等待协程信息加入链表中,等待控制协程中发送信号通知一个(Signal())或所有(Boardcast())等待者(内部实现是通过票据通知的)来控制协程解除阻塞 。
暴露四个函数:
实现细节:
部件:
包: golang.org/x/sync/errgroup
作用:开启func() error函数签名的协程 , 在同 Group 下协程并发执行过程并收集首次 err 错误 。通过 Context 的传入,还可以控制在首次 err 出现时就终止组内各协程 。
设计思路:
结构:
暴露的方法:
实现细节:
注意问题:
包: "golang.org/x/sync/semaphore"
作用:排队借资源(如钱,有借有还)的一种场景 。此包相当于对底层信号量的一种暴露 。
设计思路:有一定数量的资源 Weight , 每一个 waiter 携带一个 channel 和要借的数量 n 。通过队列排队执行借贷 。
结构:
暴露方法:
细节:
部件:
细节:
包: "golang.org/x/sync/singleflight"
作用:防击穿 。瞬时的相同请求只调用一次,response 被所有相同请求共享 。
设计思路:按请求的 key 分组(一个 *call 是一个组 , 用 map 映射存储组),每个组只进行一次访问,组内每个协程会获得对应结果的一个拷贝 。
结构:
逻辑:
细节:
部件:
如有错误,请批评指正 。
go语言链表反转的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于go 链表反转、go语言链表反转的信息别忘了在本站进行查找喔 。

    推荐阅读