推荐 8 个炫酷的 Python 装饰器1、 lru_cache
这个装饰器来自functools模块 。该模块包含在标准库中,非常易于使用 。它还包含比这个装饰器更酷的功能 , 但这个装饰器是非常受人喜欢的 。此装饰器可用于使用缓存加速函数的连续运行 。当然 , 这应该在使用时记住一些关于缓存的注意事项,但在通用使用情况下,大多数时候这个装饰器都是值得使用的 。
2、JIT
JIT是即时编译的缩写 。通常每当我们在Python中运行一些代码时,发生的第一件事就是编译 。这种编译会产生一些开销,因为类型被分配了内存,并存储为未分配但已命名的别名,使用即时编译,我们在执行时才进行编译 。
在很多方面,我们可以将其视为类似于并行计算的东西,其中Python解释器同时处理两件事以节省时间 。Numba JTI编译器因将这一概念提到Python中而闻名,可以非常轻松地调用此装饰器,并立即提高代码的性能 。Numba包提供了JIT装饰器 , 它使运行更密集的软件变得更加容易,而不必进入C 。
3、do_twice
do_twice装饰器的功能与它的名字差不多 。此装饰器可用于通过一次调用运行两次函数,对调试特别有用 。它可以用于测量两个不同迭代的功能 。
4、count_calls
count_calls装饰器可用于提供有关函数在软件中使用多少次的信息 。与do_twice一样 , 对调试也特别有用 。
5、dataclass
为了节省编写类的时间,推荐使用dataclass装饰器 。这个装饰器可用于快速编写类中常见的标准方法,这些方法通常会在我们编写的类中找到 。
6、singleton
singleton是一个单例装饰器 。通常,单例装饰器是由用户自己编写的,实际上并不是导入的 。
7、use_unit
在科学计算中经常派上用场的一种装饰器是use_unit装饰器 。此装饰器可用于更改返回结果的表示单位 。这对于那些不想在数据中添加度量单位但仍希望人们知道这些单位是什么的人很有用 。这个装饰器可不是在任何模块中真正有用,但它是非常常见的,对科学应用程序非常有用 。
Python笔记:Python装饰器装饰器是通过装饰器函数修改原函数的一些功能而不需要修改原函数,在很多场景可以用到它,比如① 执行某个测试用例之前,判断是否需要登录或者执行某些特定操作;② 统计某个函数的执行时间;③ 判断输入合法性等 。合理使用装饰器可以极大地提高程序的可读性以及运行效率 。本文将介绍Python装饰器的使用方法 。
python装饰器可以定义如下:
输出:
python解释器将test_decorator函数作为参数传递给my_decorator函数,并指向了内部函数 wrapper(),内部函数 wrapper() 又会调用原函数 test_decorator(),所以decorator()的执行会先打印'this is wrapper',然后打印'hello world',test_decorator()执行完成后,打印 'bye' , *args和**kwargs , 表示接受任意数量和类型的参数 。
装饰器 my_decorator() 把真正需要执行的函数 test_decorator() 包裹在其中,并且改变了它的行为,但是原函数 test_decorator() 不变 。
一般使用如下形式使用装饰器:
@my_decorator就相当于decorator = my_decorator(test_decorator)语句 。
内置装饰器@functools.wrap可用于保留原函数的元信息(将原函数的元信息,拷贝到对应的装饰器函数里) 。先来看看没有使用functools的情况:
输出:
从上面的输出可以看出test_decorator() 函数被装饰以后元信息被wrapper() 函数取代了,可以使用@functools.wrap装饰器保留原函数的元信息:
输出:
装饰器可以接受自定义参数 。比如定义一个参数来设置装饰器内部函数的执行次数:
输出:
Python 支持多个装饰器嵌套:
装饰的过程:
顺序从里到外:
test_decorator('hello world') 执行顺序和装饰的过程相反 。
输出:
类也可以作为装饰器,类装饰器主要依赖__call__()方法,是python中所有能被调用的对象具有的内置方法(python魔术方法),每当调用一个类的实例时,__call__()就会被执行一次 。
下面的类装饰器实现统计函数执行次数:
输出:
下面介绍两种装饰器使用场景
统计函数执行所花费的时间
输出:
在使用某些web服务时,需要先判断用户是否登录,如果没有登录就跳转到登录页面或者提示用户登录:
--THE END--
python装饰器使用 装饰器是从英文decorator翻译过来的,从字面上来看就是对某个东西进行修饰 , 增强被修饰物的功能,下面我们对装饰器做下简单介绍 。
一、怎么编写装饰器
装饰器的实现很简单,本质是一个可调用对象,可以是函数、方法、对象等 , 它既可以装饰函数也可以装饰类和方法,为了简单说明问题,我们实现一个函数装饰器,如下代码:
有了这个装饰器 , 我们就可以打印出什么时候开始和结束调用函数,对于排查函数的调用链非常方便 。
二、带参数的装饰器
上面的例子无论什么时候调用sum都会输出信息,如果我们需要按需输出信息怎么实现呢,这时就要用到带参数的装饰器了 , 如下代码:
对sum使用装饰器时没有参数,这时debug为0,所以调用sum时不会输出函数调用相关信息 。
对multi使用装饰器时有参数,这时debug为1,所以调用multi时会输出函数调用相关信息 。
三、函数名字问题
当我们打印被装饰后的函数名字时,不知道大家有没发现输出的不是函数本身的名字 , 如下代码会输出‘wrap’而不是‘sum’:
有时这种表现并不是我们想要的,我们希望被装饰后的函数名字还是函数本身,那要怎么实现呢?很简单,只需要引入functools.wraps即可,如下代码就会输出‘sum’了:
看完后是不是觉得python装饰器很简单,只要了解它的本质,怎么写都行 , 有好多种玩法呢 。
python装饰器的作用和功能装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动python函数装饰品的前提下增加额外功能,装饰器的返回值也是一个函数对象 。它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等场景 。装饰器是解决这类问题的绝佳设计,有python函数装饰品了装饰器,python函数装饰品我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用 。概括的讲 , 装饰器的作用就是为已经存在的对象添加额外的功能
「低门槛 手把手」python 装饰器(Decorators)原理说明本文目的是由浅入深地介绍python装饰器原理
装饰器(Decorators)是 Python 的一个重要部分
其功能是,在不修改原函数(类)定义代码的情况下,增加新的功能
为了理解和实现装饰器,我们先引入2个核心操作:
在这个例子中,函数hi的形参name,默认为'world'
在函数内部,又定义了另一个函数 howdoyoudo,定义这个函数时,将形参name作为新函数的形参name2的默认值 。
因此,在函数内部调用howdoyoudo()时,将以调用hi时的实参为默认值,但也可以给howdoyoudo输入其他参数 。
上面的例子运行后输出结果为:
这里新定义的howdoyoudo可以称作一个“闭包” 。不少关于装饰器的blog都提到了这个概念 , 但其实没必要给它取一个多专业的名字 。我们知道闭包是函数内的函数就可以了
当我们进行 def 的时候,我们在做什么?
这时,hi函数,打印一个字符串 , 同时返回一个字符串 。
但hi函数本身也是一个对象,一个可以执行的对象 。执行的方式是hi() 。
这里hi和hi()有本质区别 ,
hi 代表了这个函数对象本身
hi() 则是运行了函数,得到函数的返回值 。
作为对比,可以想象以下代码
此时也是b存在,可以正常使用 。
我们定义2个函数,分别实现自加1, 自乘2,
再定义一个函数double_exec,内容是将某个函数调用2次
在调用double_exec时,可以将函数作为输入传进来
输出结果就是
7
27
同样,也可以将函数作为输出
输出结果为
6
10
有了以上两个核心操作 , 我们可以尝试构造装饰器了 。
装饰器的目的:在不修改原函数(类)定义代码的情况下 , 增加新的功能
试想一下 , 现在有一个原函数
在不修改原函数定义代码的情况下 , 如果想进行函数内容的添加 , 可以将这个函数作为一个整体 , 添加到这样的包裹中:
我们定义了一个my_decorator函数,这个函数进行了一种操作:
对传入的f,添加操作(运行前后增加打印),并把添加操作后的内容连同运行原函数的内容,一起传出
这个my_decorator,定义了一种增加前后打印内容的行为
调用my_decorator时,对这个行为进行了操作 。
因此,new_function是一个在original_function上增加了前后打印行为的新函数
这个过程被可以被称作装饰 。
这里已经可以发现 , 装饰器本身对于被装饰的函数是什么,是不需要考虑的 。装饰器本身只定义了一种装饰行为,这个行为是通过装饰器内部的闭包函数()进行定义的 。
运行装饰前后的函数,可以清晰看到装饰的效果
我们复现一下实际要用装饰器的情况,我们往往有一种装饰器,想应用于很多个函数,比如
此时,如果我们想给3个print函数都加上装饰器,需要这么做
实际调用的时候 , 就需要调用添加装饰器的函数名了
当然,也可以赋值给原函数名
这样至少不需要管理一系列装饰前后的函数 。
同时,在不需要进行装饰的时候,需要把
全部删掉 。
事实上,这样并不方便,尤其对于更复杂的装饰器来说
为此,python提供了一种简写方式
这个定义print1函数前的@my_decorator,相当于在定义完print1后,自动直接运行了
不论采用@my_decorator放在新函数前,还是显示地重写print1 = my_decorator(print1),都会存在一个问题:
装饰后的函数 , 名字改变了(其实不止名字 , 一系列的索引都改变了)
输出结果为:
这个现象的原因是,装饰行为本身,是通过构造了一个新的函数(例子中是wrap_func函数)来实现装饰这个行为的,然后把这个修改后的函数赋给了原函数名 。
这样 , 会导致我们预期的被装饰函数的一些系统变量(比如__name__)发生了变化 。
对此 , python提供了解决方案:
经过这个行为后 , 被装饰函数的系统变量问题被解决了
输出结果为
刚才的例子都比较简单,被装饰的函数是没有参数的 。如果被装饰的函数有参数,只需要在定义装饰行为时(事实上,这个才更通用),增加(*args, **kwargs)描述即可
之前的描述中可以感受到,对于例子中的装饰行为(前后加打印),函数被装饰后 , 本质上是调用了新的装饰函数wrap_func 。
因此,如果原函数需要有输入参数传递,只需要在wrap_func(或其他任意名字的装饰函数)定义时 , 也增加参数输入(*args, **kwargs),并将这些参数,原封不动地传给待装饰函数f 。
这种定义装饰行为的方式更具有普遍性,忘记之前的定义方式吧
我们试一下
输出
这里需要注意的是,如果按照以下的方式定义装饰器
那么以下语句将不会执行
因为装饰后实际的函数wrap_func(虽然名字被改成了原函数,系统参数也改成了原函数),运行到return f(*args, **kwargs) 的时候已经结束了
因为装饰器my_decorator本身也是可以输入的,因此,只需要在定义装饰器时,增加参数,并在后续函数中使用就可以了 , 比如
此时装饰器已经可以有输入参数了
输出
你可能发现,为什么不用简写版的方法了
因为以上代码会报错?。?
究其原因,虽然
等价于
但是,
并不等价于
这本身和@语法有关,使用@my_decorator时,是系统在应用一个以单个函数作为参数的闭包函数 。即,@是不能带参数的 。
但是你应该发现了 , 之前的@wraps(f)不是带参数了吗?请仔细观察以下代码
通过一层嵌套,my_decorator_with_parma本质上是返回了一个参数仅为一个函数的函数(my_decorator),但因为my_decorator对my_decorator_with_parma来说是一个闭包 , my_decorator_with_parma是可以带参数的 。(这句话真绕)
通过以上的定义,我们再来看
可以这么理解,my_decorator_with_parma(msg='yusheng')的结果是原来的my_decorator函数,同时,因为my_decorator_with_parma可以传参,参数实际上是参与了my_decorator的(因为my_decorator对my_decorator_with_parma是闭包),my_decorator_with_parma(msg='yusheng')全等于一个有参数参加的my_decorator
因此,以上代码等价于有参数msg传递的
比较绕,需要理解一下 , 或者干脆强记这种范式:
以上范式包含函数的输入输出、装饰器的输入,可以应对大部分情况了 。
实验一下:
输出
以上是一个log装饰器 , 利用datetime统计了函数的耗时,
并且 , 装饰器可以进行输出文件操作,如果给出了文件路径,则输出文件,否则就打印 。
利用这个装饰器 , 可以灵活地进行耗时统计
不设置输出文件地址,则打印 。运行结果为:
也可以输出到文件
【关于python函数装饰品的信息】输出结果为
同时在当前目录生成了一个test.log 文件 , 内容为:
以上的装饰器都是以函数形式出现的,但我们可以稍做改写,将装饰器以类的形式实现 。
这个装饰器类Log 上个例子里的装饰器函数log功能是一样的,同时 , 这个装饰器类还可以作为基类被其他继承,进一步增加功能 。
原文
两个很实用的Python装饰器详解 这个函数的作用在于可以给任意可能会hang住的函数添加超时功能,这个功能在编写外部API调用 、网络爬虫、数据库查询的时候特别有用
timeout装饰器的代码如下
使用:
## 输出
---------------------------------------------------------------------------
TimeoutError Traceback (most recent call last)
有时候出于演示目的或者调试目的,我们需要程序运行的时候打印出每一步的运行顺序 和调用逻辑 。类似写bash的时候的bash -x调试功能 , 然后Python解释器并没有 内置这个时分有用的功能,那么我们就“自己动手,丰衣足食” 。
Trace装饰器的代码如下:
使用:
## 输出
(3): print 1 # @trace 的输出
1
(4): print 22 # @trace 的输出
22
(5): print 333 # @trace 的输出
333
python函数装饰品的介绍就聊到这里吧,感谢你花时间阅读本站内容 , 更多关于、python函数装饰品的信息别忘了在本站进行查找喔 。
推荐阅读
- 固态硬盘速度怎么选择型号,固态硬盘速度看哪个参数
- css鼠标经过背景变色6,css鼠标经过背景变色6个颜色
- 电商网店如何经营店铺,电商网上开店步骤
- 怎么改装办公电脑显卡,怎么改装办公电脑显卡驱动
- php往空数组添加数据 php数组存入数据库
- html5考研,考研考html吗
- hbase计数器数据批量导入,hbase增量导入数据
- oracle里怎么输工龄 oracle算年龄
- 视频号粉丝与抖音粉丝的区别,视频号粉丝与抖音粉丝的区别是什么