python迭代函数系统 python迭代运算

Python中的“迭代”详解 迭代器模式:一种惰性获取数据项的方式,即按需一次获取一个数据项 。
所有序列都是可以迭代的 。我们接下来要实现一个 Sentence(句子)类,我们向这个类的构造方法传入包含一些文本的字符串 , 然后可以逐个单词迭代 。
接下来测试 Sentence 实例能否迭代
序列可以迭代的原因:
iter()
解释器需要迭代对象 x 时,会自动调用iter(x) 。
内置的 iter 函数有以下作用:
由于序列都实现了 __getitem__ 方法 , 所以都可以迭代 。
可迭代对象:使用内置函数 iter() 可以获取迭代器的对象 。
与迭代器的关系:Python 从可迭代对象中获取迭代器 。
下面用for循环迭代一个字符串,这里字符串 'abc' 是可迭代的对象,用 for 循环迭代时是有生成器,只是 Python 隐藏了 。
如果没有 for 语句,使用 while 循环模拟,要写成下面这样:
Python 内部会处理 for 循环和其他迭代上下文(如列表推导 , 元组拆包等等)中的 StopIteration 异常 。
标准的迭代器接口有两个方法:
__next__ :返回下一个可用的元素 , 如果没有元素了,抛出 StopIteration 异常 。
__iter__ :返回 self,以便在需要使用可迭代对象的地方使用迭代器,如 for 循环中 。
迭代器:实现了无参数的 __next__ 方法,返回序列中的下一个元素;如果没有元素了,那么抛出 StopIteration 异常 。Python 中的迭代器还实现了 __iter__ 方法,因此迭代器也可以迭代 。
接下来使用迭代器模式实现 Sentence 类:
注意,不要 在 Sentence 类中实现__next__方法,让 Sentence 实例既是可迭代对象,也是自身的迭代器 。
为了“支持多种遍历”,必须能从同一个可迭代的实例中获取多个独立的迭代器,而且各个迭代器要能维护自身的内部状态,因此这一模式正确的实现方式是 , 每次调用 iter(my_iterable) 都新建一个独立的迭代器 。
所以总结下来就是:
实现相同功能,但却符合 Python 习惯的方式是,用生成器函数代替 SentenceIteror 类 。
只要 Python 函数的定义体中有 yield 关键字 , 该函数就是生成器函数 。调用生成器函数,就会返回一个生成器对象 。
生成器函数会创建一个生成器对象,包装生成器函数的定义体,把生成器传给 next(...) 函数时,生成器函数会向前 , 执行函数定义体中的下一个 yield 语句,返回产出的值,并在函数定义体的当前位置暂停,。最终,函数的定义体返回时,外层的生成器对象会抛出 StopIteration 异常,这一点与迭代器协议一致 。
如今这一版 Sentence 类相较之前简短多了,但是还不够慵懒 。惰性 ,是如今人们认为最好的特质 。惰性实现是指尽可能延后生成值,这样做能节省内存,或许还能避免做无用的处理 。
目前实现的几版 Sentence 类都不具有惰性 , 因为__init__ 方法急迫的构建好了文本中的单词列表,然后将其绑定到 self.words 属性上 。这样就得处理整个文本,列表使用的内存量可能与文本本身一样多(或许更多 , 取决于文本中有多少非单词字符) 。
re.finditer函数是re.findall 函数的惰性版本,返回的是一个生成器,按需生成 re.MatchObject 实例 。我们可以使用这个函数来让 Sentence 类变得懒惰,即只在需要时才生成下一个单词 。
标准库提供了很多生成器函数,有用于逐行迭代纯文本文件的对象,还有出色的 os.walk 函数等等 。本节专注于通用的函数:参数为任意的可迭代对象,返回值是生成器,用于生成选中的、计算出的和重新排列的元素 。
第一组是用于 过滤 的生成器函数:从输入的可迭代对象中产出元素的子集,而且不修改元素本身 。这种函数大多数都接受一个断言参数(predicate),这个参数是个 布尔函数 , 有一个参数,会应用到输入中的每个元素上,用于判断元素是否包含在输出中 。
以下为这些函数的演示:
第二组是用于映射的生成器函数:在输入的单个/多个可迭代对象中的各个元素上做计算,然后返回结果 。
以下为这些函数的用法:
第三组是用于合并的生成器函数,这些函数都可以从输入的多个可迭代对象中产出元素 。
以下为演示:
第四组是从一个元素中产出多个值 , 扩展输入的可迭代对象 。
以下为演示:
第五组生成器函数用于产出输入的可迭代对象中的全部元素,不过会以某种方式重新排列 。
下面的函数都接受一个可迭代的对象,然后返回单个结果,这种函数叫“归约函数”,“合拢函数”或“累加函数” , 其实,这些内置函数都可以用 functools.reduce 函数实现,但内置更加方便,而且还有一些优点 。
参考教程:
《流畅的python》 P330 - 363
在python中iteritems()函数是什么看函数名是迭代输出字典的键值对 。
for k,v in dict.iteritems():
print k,v
是迭代器函数 。可以在for循环内使用,单独使用的方法:
iter = dict.iteritems()
iter.next()
来获得键值对 。
Python中迭代器(Iterator)?generator都输出生成一个iterator对象 , 再由iterator遍历出元素 。迭代器就是逐个以“下一个”的形式返回元素的函数 。
比如range(10)是生成器,生成一个显示为"range(0,10)"的迭代器对象,可以进一步由for等遍历输出0,1,2,3..10
又比如对于遍历字典的iter(d)都是生成器函数
都在不同的层面,无所谓好坏...生成器产生不同的迭代器 , 迭代器直接产生元素,适合各自情况的就用...
有必要区分generator生成器函数(对象)和generator expression生成器表达式
比如:
range()生成器函数
for i in range(10)生成器表达式
[i 1 for i in range(10)]对生成器表达式的"列表分解"
另 , 贴图中由于断章取义,这里的“生成器自身”应该是有特指某个生成器,而不是所有生成器的共性
Python3 - 排列组合的迭代 遍历一个序列中元素的所有可能的排列或组合 。
itertools模块提供python迭代函数系统了三个函数来解决这类问题 。其中一个是itertools.permutations()python迭代函数系统, 它接受一个序列并产生一个元组序列python迭代函数系统,每个元组由序列中所有元素的一个可能排列组成python迭代函数系统,即通过打乱序列中元素排列顺序生成一个元组,比如:
如果想得到指定长度的所有排列,你可以传递一个可选的长度参数 。比如:
使用itertools.combinations()可得到输入序列中元素的所有的组合 。比如:
对于combinations()来讲,元素的顺序已经不重要了,即组合 ('a', 'b') 与 ('b', 'a') 其实是一样的 , 最终只会输出其中一个 。
在计算组合的时候,一旦元素被选取就会从候选中剔除掉(比如如果元素’a’已经被选取了,那么接下来就不会再考虑它了) 。而函数itertools.combinations_with_replacement()允许同一个元素被选择多次,比如:
尽管手动可以实现排列组合算法 , 但是这样做比较麻烦,当遇到有些复杂的迭代问题时,可以先去看看itertools模块是否能实现 , 很有可能会在里面找到解决方案!
【python迭代函数系统 python迭代运算】关于python迭代函数系统和python迭代运算的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息 , 记得收藏关注本站 。

    推荐阅读